Saturday, November 23, 2024
Google search engine
HomeData Modelling & AIApproximation algorithms for Knapsack

Approximation algorithms for Knapsack

Knapsack problems are those problems in which some set of items will be given to us, each with a weight and value and we will be asked to find the most valuable combination by maximizing the total value of items and the weight should not exceed the knapsack weigh.

file

Approximation Algorithms:

It plays a vital role in finding the optimal solution to the knapsack problems as in real-world scenarios finding the exact optimal solution to the knapsack problem is quite impractical due to the problem’s NP-hard nature. These approximation algorithms offer a reasonable solution to the knapsack problem by taking both time and space complexity into consideration.

we will discuss two approximation algorithms:

Let’s consider a problem statement to understand these algorithms better:

Given a set of items, each with a weight and a value, and a knapsack of limited capacity, we need to find the most valuable combination of items to include in the knapsack while ensuring that the total weight does not exceed the knapsack’s capacity.

Examples:

Input: N = 3, W = 4, values[] = {1, 2, 3}, weight[] = {4, 5, 1}
Output: 3
Explanation: In this example, we have three items with respective values and weights:

  • Item 1: value = 1, weight = 4
  • Item 2: value = 2, weight = 5
  • Item 3: value = 3, weight = 1

The knapsack has a capacity of 4. By selecting either Item 1 or Item 3, we can achieve the maximum value of 3. Since the weight of Item 1 (4) exceeds the knapsack’s capacity, we choose Item 3, which has a weight of 1 and a value of 3.

Input: N = 3, W = 3, values[] = {1, 2, 3}, weight[] = {4, 5, 6}
Output: 0

Greedy Algorithms to the Knapsack Problem

The greedy approach is a simple and intutive algorithm for solving knapsack problem. It will select the items based on theri value to weight ratios and choosing the items with highest ratios first.

Step-by-step algorithm:

  • Sort the items in descending order of their value-to-weight ratios.
  • Initialize the knapsack as empty and set the total value to zero.
  • Iterate through the items in the sorted order:
    • If the current item can be fully included in the knapsack, add it completely and update the total value.
    • Otherwise, include a fractional part of the item that fits the remaining capacity of the knapsack, proportionally increasing the total value.
  • Return the knapsack’s final configuration and the total value.

Below is the implementation of the above approach in Python:

C++




// CPP program of the above approach
#include <bits/stdc++.h>
using namespace std;
 
struct Item {
    double ratio;
    int index;
};
 
bool compare(Item a, Item b) { return a.ratio > b.ratio; }
 
int knapsack_greedy(int N, int W, vector<int>& values,
                    vector<int>& weights)
{
    vector<Item> ratios(N);
    //  Calculate value-to-weight ratios for all items
    for (int i = 0; i < N; i++) {
        ratios[i].ratio
            = static_cast<double>(values[i]) / weights[i];
        ratios[i].index = i;
    }
 
    sort(ratios.begin(), ratios.end(), compare);
 
    int total_value = 0;
    int total_weight = 0;
 
    for (const auto& item : ratios) {
        int index = item.index;
        if (total_weight + weights[index] <= W) {
            total_value += values[index];
            total_weight += weights[index];
        }
    }
 
    return total_value;
}
 
// Driver's Code
int main()
{
    int N = 3;
    int W = 4;
    vector<int> values = { 1, 2, 3 };
    vector<int> weights = { 4, 5, 1 };
 
    int result = knapsack_greedy(N, W, values, weights);
    cout << result << endl;
 
    return 0;
}
 
// This code is contributed by Susobhan Akhuli


Java




// Java program of the above approach
import java.util.*;
 
class Item {
    double ratio;
    int index;
}
 
public class GFG {
 
    // Custom comparator to sort items based on the
    // value-to-weight ratio in descending order
    static class ItemComparator
        implements Comparator<Item> {
        public int compare(Item a, Item b)
        {
            return Double.compare(b.ratio, a.ratio);
        }
    }
 
    static int knapsackGreedy(int N, int W, int[] values,
                              int[] weights)
    {
        // Create an array to store items with their
        // corresponding value-to-weight ratio
        Item[] items = new Item[N];
        for (int i = 0; i < N; i++) {
            items[i] = new Item();
            items[i].ratio = (double)values[i] / weights[i];
            items[i].index = i;
        }
 
        // Sort the items based on the value-to-weight ratio
        // in descending order
        Arrays.sort(items, new ItemComparator());
 
        int totalValue = 0;
        int totalWeight = 0;
 
        // Iterate through the sorted items and add them to
        // the knapsack if possible
        for (Item item : items) {
            int index = item.index;
            if (totalWeight + weights[index] <= W) {
                totalValue += values[index];
                totalWeight += weights[index];
            }
        }
 
        return totalValue;
    }
 
    // Driver's Code
    public static void main(String[] args)
    {
        int N = 3;
        int W = 4;
        int[] values = { 1, 2, 3 };
        int[] weights = { 4, 5, 1 };
 
        int result = knapsackGreedy(N, W, values, weights);
        System.out.println(result);
    }
}
 
// This code is contributed by Susobhan Akhuli


Python3




def knapsack_greedy(N, W, values, weights):
    # Calculate value-to-weight ratios for all items
    ratios = [(values[i] / weights[i], i) for i in range(N)]
    ratios.sort(reverse=True)
 
    total_value = 0
    total_weight = 0
 
    for ratio, item in ratios:
        if total_weight + weights[item] <= W:
            total_value += values[item]
            total_weight += weights[item]
 
    return total_value
 
 
# Example usage
N = 3
W = 4
values = [1, 2, 3]
weights = [4, 5, 1]
 
result = knapsack_greedy(N, W, values, weights)
print(result)


C#




// C# implementation of the above approach
using System;
using System.Collections.Generic;
using System.Linq;
 
class Item
{
    public double Ratio { get; set; }
    public int Index { get; set; }
}
 
public class GFG
{
    // Custom comparator to sort items based on the
    // value-to-weight ratio in descending order
    class ItemComparer : IComparer<Item>
    {
        public int Compare(Item a, Item b)
        {
            return b.Ratio.CompareTo(a.Ratio);
        }
    }
 
    static int KnapsackGreedy(int N, int W, int[] values, int[] weights)
    {
        // Create an array to store items with their
        // corresponding value-to-weight ratio
        Item[] items = new Item[N];
        for (int i = 0; i < N; i++)
        {
            items[i] = new Item
            {
                Ratio = (double)values[i] / weights[i],
                Index = i
            };
        }
 
        // Sort the items based on the value-to-weight ratio
        // in descending order
        Array.Sort(items, new ItemComparer());
 
        int totalValue = 0;
        int totalWeight = 0;
 
        // Iterate through the sorted items and add them to
        // the knapsack if possible
        foreach (Item item in items)
        {
            int index = item.Index;
            if (totalWeight + weights[index] <= W)
            {
                totalValue += values[index];
                totalWeight += weights[index];
            }
        }
 
        return totalValue;
    }
 
    // Driver's Code
    public static void Main(string[] args)
    {
        int N = 3;
        int W = 4;
        int[] values = { 1, 2, 3 };
        int[] weights = { 4, 5, 1 };
 
        int result = KnapsackGreedy(N, W, values, weights);
        Console.WriteLine(result);
    }
}
// This is contributed by Sakshi


Javascript




function GFG(N, W, values, weights) {
  const ratios = [];
   
  // Calculate value-to-weight ratios
  // for all items
  for (let i = 0; i < N; i++) {
    const ratio1 = values[i] / weights[i];
    ratios.push({ ratio1, index: i });
  }
  // Sort the ratios array in
  // descending order based on ratios
  ratios.sort((a, b) => b.ratio1 - a.ratio1);
  let totalValue = 0;
  let totalWeight = 0;
  // Iterate through the sorted ratios array
  for (const item of ratios) {
    const index = item.index;
    // Check if adding the current item's weight exceeds
    // the knapsack capacity
    if (totalWeight + weights[index] <= W) {
      totalValue += values[index];
      totalWeight += weights[index];
    }
  }
  return totalValue;
}
// Main
function main() {
  const N = 3;
  const W = 4;
  const values = [1, 2, 3];
  const weights = [4, 5, 1];
  const result = GFG(N, W, values, weights);
  console.log(result);
}
main();


Output

3














Time Complexity: O(N log N) where N is the number of items due to sorting
Auxiliary Space: O(N) where N is the number of items. 

Dynamic Programming Approach for the Knapsack Problem

Using dynamic programming we can break down the problem into smaller subproblems and will use a table to store the optimal solutions for the these subproblems. We will iterate through each item and weight combination making a decision to either include or exclude the item based on its value and weight and we can achieve result by avoiding redundant calucations

Step-by-step algorithm:

  • Create a 2D list called dp with dimensions (N+1) x (W+1) and initialize all values to 0. This table will store the maximum achievable values for different combinations of items and capacities.
  • Iterate through each item from 1 to N and each capacity from 1 to W:
    • If the weight of the current item is greater than the current capacity, it cannot be included in the knapsack. So, assign the value at the previous item and the same capacity to dp[i][j].
    • If the weight of the current item is less than or equal to the current capacity, we have two choices:
    • Include the current item: Add its value to the value obtained by considering the remaining capacity after including the item (values[i-1] + dp[i-1][j – weights[i-1]]).
    • Exclude the current item: Consider the value obtained by excluding the item (dp[i-1][j]). Choose the maximum value between the two choices and assign it to dp[i][j].
  • After completing the iterations, the value at dp[N][W] represents the maximum achievable value for the given knapsack capacity.
  • Return the value dp[N][W] as the maximum value that can be obtained.

Below is the implementation for the above approach:

C++




// CPP code of the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to solve the knapsack problem
int knapsack(int N, int W, vector<int> values,
             vector<int> weights)
{
    // Initializing a 2D vector for dynamic programming
    vector<vector<int> > dp(N + 1, vector<int>(W + 1, 0));
 
    // Loop through the items
    for (int i = 1; i < N + 1; i++) {
        // Loop through the weight capacity
        for (int j = 1; j < W + 1; j++) {
            // Check if the current item's weight exceeds
            // the capacity
            if (weights[i - 1] > j) {
                // If the weight is greater, take the value
                // without this item
                dp[i][j] = dp[i - 1][j];
            }
            else {
                // If the weight is feasible, find the
                // maximum value considering whether to take
                // this item
                dp[i][j] = max(
                    values[i - 1]
                        + dp[i - 1][j - weights[i - 1]],
                    dp[i - 1][j]);
            }
        }
    }
 
    // Return the maximum value that can be obtained
    return dp[N][W];
}
 
int main()
{
    // Example usage
    int N = 3;
    int W = 4;
    vector<int> values = { 1, 2, 3 };
    vector<int> weights = { 4, 5, 1 };
 
    // Calling the knapsack function and printing the result
    int result = knapsack(N, W, values, weights);
    cout << result << endl;
 
    return 0;
}
 
// This code is contributed by Susobhan Akhuli


Java




// Java code of the above approach
import java.util.*;
 
public class Knapsack {
    // Function to solve the knapsack problem
    static int knapsack(int N, int W, List<Integer> values,
                        List<Integer> weights)
    {
        // Initializing a 2D array for dynamic programming
        int[][] dp = new int[N + 1][W + 1];
 
        // Loop through the items
        for (int i = 1; i < N + 1; i++) {
            // Loop through the weight capacity
            for (int j = 1; j < W + 1; j++) {
                // Check if the current item's weight
                // exceeds the capacity
                if (weights.get(i - 1) > j) {
                    // If the weight is greater, take the
                    // value without this item
                    dp[i][j] = dp[i - 1][j];
                }
                else {
                    // If the weight is feasible, find the
                    // maximum value considering whether to
                    // take this item
                    dp[i][j] = Math.max(
                        values.get(i - 1)
                            + dp[i - 1]
                                [j - weights.get(i - 1)],
                        dp[i - 1][j]);
                }
            }
        }
 
        // Return the maximum value that can be obtained
        return dp[N][W];
    }
 
    public static void main(String[] args)
    {
        // Example usage
        int N = 3;
        int W = 4;
        List<Integer> values
            = new ArrayList<>(Arrays.asList(1, 2, 3));
        List<Integer> weights
            = new ArrayList<>(Arrays.asList(4, 5, 1));
 
        // Calling the knapsack function and printing the
        // result
        int result = knapsack(N, W, values, weights);
        System.out.println(result);
    }
}
 
// This code is contributed by Susobhan Akhuli


Python3




def knapsack(N, W, values, weights):
    dp = [[0 for _ in range(W + 1)] for _ in range(N + 1)]
 
    for i in range(1, N + 1):
        for j in range(1, W + 1):
            if weights[i-1] > j:
                dp[i][j] = dp[i-1][j]
            else:
                dp[i][j] = max(values[i-1] + dp[i-1]
                               [j-weights[i-1]], dp[i-1][j])
 
    return dp[N][W]
 
 
# Example usage
N = 3
W = 4
values = [1, 2, 3]
weights = [4, 5, 1]
 
result = knapsack(N, W, values, weights)
print(result)


Output

3














Time Complexity: O(N * W) where N is items and W is capacities.
Auxiliary Space: O(N * W) where N is items and W is capacities.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments