Monday, January 27, 2025
Google search engine
HomeLanguagesApplying a custom function on PySpark Columns with UDF

Applying a custom function on PySpark Columns with UDF

In this article, we are going to learn how to apply a custom function on Pyspark columns with UDF in Python.

The most useful feature of Spark SQL & DataFrame that is used to extend the PySpark build-in capabilities is known as UDF in Pyspark. There occurs various circumstances in which we need to apply a custom function on Pyspark columns. This can be achieved through various ways, but in this article, we will see how we can achieve applying a custom function on PySpark Columns with UDF.

Syntax: F.udf(function, T.column_type())

Parameters:

  • function: It is the function that you want to apply on the Pyspark columns using UDF.
  • column_type: It is the type of column which you want to assign after the function has been applied.

Stepwise Implementation:

Step 1: First of all, import the required libraries, i.e., SparkSession, functions and types. The SparkSession library is used to create the session, while functions gives access to list of built-in functions available in Pyspark. The types give access to all the data types in Pyspark.

from pyspark.sql import SparkSession

Step 2: Now, create a spark session using the getOrCreate() function.

spark_session = SparkSession.builder.getOrCreate()

Step 3: Then, read the CSV file or create the data frame using the createDataFrame() function on which you want to apply a custom function on the columns using UDF.

data_frame=csv_file = spark_session.read.csv('#Path of CSV file',
            sep = ',', inferSchema = True, header = True)

or

data_frame=spark_session.createDataFrame([(column_1_data), (column_2_data), (column_3_data)],
                                         ['column_name_1', 'column_name_2', 'column_name_3'])

Step 4: Later on, apply a custom function on PySpark Columns with UDF.

custom_function = F.udf(function, T.column_type())

Step 5: Further, create new columns by applying that function to the columns.

updated_df = df.withColumn('column_1',
                            custom_function('column_1')).withColumn('column_2',
                            custom_function('column_2'))

Step 6: Finally, display the updated data frame

updated_df.show()

Example 1:

In this example, we have read the CSV file (link), i.e., basically a dataset of 5*5 as follows:

Applying a custom function on PySpark Columns with UDF

 

Then, we calculated the current year and applied a custom function on Pyspark columns using UDF to calculate the birth year by subtracting age from the current year. Finally, we created a new column ‘Birth Year‘ by calling that function, i.e., birth_year, and displayed the data frame.

Python3




# Python program to apply a custom 
# function on PySpark Columns with UDF
  
# Import the libraries SparkSession, functions, types and date
from pyspark.sql import SparkSession
import pyspark.sql.functions as F
import pyspark.sql.types as T
from datetime import date
  
# Create a spark session using getOrCreate() function
spark_session = SparkSession.builder.getOrCreate()
  
# Read the CSV file
df=csv_file = spark_session.read.csv('/content/student_data.csv',
              sep = ',', inferSchema = True,
                         header = True)
  
# Get current year
current_year=date.today().year
  
# Applying a custom function on PySpark Columns with UDF
birth_year = F.udf(lambda age: current_year-age,
                   T.StringType())
  
# Create new column for calculating the birth year
updated_df = df.withColumn('Birth Year',
                           birth_year('age'))
  
# Display the updated data frame
updated_df.show()


Output:

Applying a custom function on PySpark Columns with UDF

 

Example 2:

In this example, we have created the data frame with four columns, ‘name‘, ‘maths_marks‘, ‘science_marks‘, and ‘english_marks‘ as follows:

Applying a custom function on PySpark Columns with UDF

 

Then, we applied a custom function to add all the marks on Pyspark columns using UDF and created a new column ‘Sum of Marks‘ by calling that function, i.e., sum_marks. Finally, displayed the data frame.

Python3




# Python program to apply a custom 
# function on PySpark Columns with UDF
  
# Import the libraries SparkSession, functions, types
from pyspark.sql import SparkSession
import pyspark.sql.functions as F
import pyspark.sql.types as T
  
# Create a spark session using getOrCreate() function
spark_session = SparkSession.builder.getOrCreate()
  
# Create a data frame with duplicate column names
df = spark_session.createDataFrame(
  [('Arun',1,2,3),('Aniket',4,5,6),
                  ('Ishita',7,8,9)],
  ['name','maths_marks','science_marks',
                        'english_marks'])
  
# Applying a custom function on PySpark Columns with UDF
sum_marks=F.udf(lambda a,b,c: a+b+c,
                         T.IntegerType())
  
# Display the data frame with new column calling the 
# sum_marks function with marks as arguments
updated_df = df.withColumn('Sum of Marks',
             sum_marks('maths_marks'
                       'science_marks',
                       'english_marks') )
  
# Display the updated data frame
updated_df.show()


Output:

Applying a custom function on PySpark Columns with UDF

 

Example 3:

In this example, we have created the data frame with four columns, ‘name‘, ‘maths_marks‘, ‘science_marks‘, and ‘english_marks‘ as follows:

Applying a custom function on PySpark Columns with UDF

 

Then, we applied a custom function to calculate the percentage of all the marks on Pyspark columns using UDF and created a new column ‘Percentage‘ by calling that function, i.e., percentage. Finally, displayed the data frame.

Python3




# Python program to apply a custom 
# function on PySpark Columns with UDF
  
# Import the libraries SparkSession, functions, types
from pyspark.sql import SparkSession
import pyspark.sql.functions as F
import pyspark.sql.types as T
  
# Create a spark session using getOrCreate() function
spark_session = SparkSession.builder.getOrCreate()
  
# Create a data frame with duplicate column names
df = spark_session.createDataFrame(
  [('Arun',1,2,3),('Aniket',4,5,6),
                  ('Ishita',7,8,9)],
  ['name','maths_marks','science_marks',
                        'english_marks'])
  
# Applying a custom function on PySpark Columns with UDF
percentage=F.udf(lambda a,b,c: ((a+b+c)/30)*100
                                   T.FloatType())
  
# Display the data frame with new column calling the
# percentage function with marks as arguments
updated_df = df.withColumn('Percentage',
             percentage('maths_marks', 'science_marks',
                                       'english_marks') )
  
# Display the updated data frame
updated_df.show()


Output:

Applying a custom function on PySpark Columns with UDF

 

Dominic Wardslaus
Dominic Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments