Thursday, October 16, 2025
HomeData Modelling & AIApothem of a n-sided regular polygon

Apothem of a n-sided regular polygon

Given here the side length a of a regular n-sided polygon, the task is to find the length of its Apothem. 
Apothem is the line drawn from the center of the polygon that is perpendicular to one of its sides. 
Examples: 
 

Input a = 9, n = 6
Output: 7.79424

Input: a = 8, n = 7
Output: 8.30609

 

 

Approach
 

In the figure, we see the polygon can be divided into n equal triangles. 
Looking into one of the triangles, we see the whole angle at the centre can be divided into = 360/n 
So, angle t = 180/n 
now, tan t = a/2h 
So, h = a/(2*tan t) 
here, h is the apothem, 
so, apothem = a/(2*tan(180/n))

Below is the implementation of the above approach.
 

C++




// C++ Program to find the apothem
// of a regular polygon with given side length
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the apothem
// of a regular polygon
float polyapothem(float n, float a)
{
 
    // Side and side length cannot be negative
    if (a < 0 && n < 0)
        return -1;
 
    // Degree converted to radians
    return a / (2 * tan((180 / n) * 3.14159 / 180));
}
 
// Driver code
int main()
{
    float a = 9, n = 6;
    cout << polyapothem(n, a) << endl;
 
    return 0;
}


Java




// Java Program to find the apothem of a
// regular polygon with given side length
import java.util.*;
 
class GFG
{
 
    // Function to find the apothem
    // of a regular polygon
    double polyapothem(double n, double a)
    {
 
        // Side and side length cannot be negative
        if (a < 0 && n < 0)
            return -1;
 
        // Degree converted to radians
        return (a / (2 * java.lang.Math.tan((180 / n)
                * 3.14159 / 180)));
    }
 
// Driver code
public static void main(String args[])
{
    double a = 9, n = 6;
    GFG g=new GFG();
    System.out.println(g.polyapothem(n, a));
}
 
}
//This code is contributed by Shivi_Aggarwal


Python3




# Python 3 Program to find the apothem
# of a regular polygon with given side
# length
from math import tan
 
# Function to find the apothem
# of a regular polygon
def polyapothem(n, a):
     
    # Side and side length cannot be negative
    if (a < 0 and n < 0):
        return -1
 
    # Degree converted to radians
    return a / (2 * tan((180 / n) *
                   3.14159 / 180))
 
# Driver code
if __name__ == '__main__':
    a = 9
    n = 6
    print('{0:.6}'.format(polyapothem(n, a)))
     
# This code is contributed by
# Sahil_Shelangia


C#




// C# Program to find the apothem of a
// regular polygon with given side length
using System;
 
class GFG
{
 
// Function to find the apothem
// of a regular polygon
static double polyapothem(double n,
                          double a)
{
 
    // Side and side length cannot
    // be negative
    if (a < 0 && n < 0)
        return -1;
 
    // Degree converted to radians
    return (a / (2 * Math.Tan((180 / n) *
                       3.14159 / 180)));
}
 
// Driver code
public static void Main()
{
    double a = 9, n = 6;
    Console.WriteLine(Math.Round(polyapothem(n, a), 4));
}
}
 
// This code is contributed by Ryuga


PHP




<?php
// PHP Program to find the apothem of a
// regular polygon with given side length
 
// Function to find the apothem
// of a regular polygon
function polyapothem($n, $a)
{
 
    // Side and side length cannot
    // be negative
    if ($a < 0 && $n < 0)
        return -1;
 
    // Degree converted to radians
    return $a / (2 * tan((180 / $n) *
                    3.14159 / 180));
}
 
// Driver code
$a = 9; $n = 6;
echo polyapothem($n, $a) . "\n";
 
// This code is contributed
// by Akanksha Rai
?>


Javascript




<script>
// javascript Program to find the apothem of a
// regular polygon with given side length
 
// Function to find the apothem
// of a regular polygon
function polyapothem(n , a)
{
 
    // Side and side length cannot be negative
    if (a < 0 && n < 0)
        return -1;
 
    // Degree converted to radians
    return (a / (2 * Math.tan((180 / n)
            * 3.14159 / 180)));
}
 
// Driver code
 
var a = 9, n = 6;
 
document.write(polyapothem(n, a).toFixed(5));
 
 
// This code contributed by Princi Singh
</script>


Output: 

7.79424

 

Time Complexity: O(1)

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Dominic
32361 POSTS0 COMMENTS
Milvus
88 POSTS0 COMMENTS
Nango Kala
6728 POSTS0 COMMENTS
Nicole Veronica
11892 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11954 POSTS0 COMMENTS
Shaida Kate Naidoo
6852 POSTS0 COMMENTS
Ted Musemwa
7113 POSTS0 COMMENTS
Thapelo Manthata
6805 POSTS0 COMMENTS
Umr Jansen
6801 POSTS0 COMMENTS