Friday, January 10, 2025
Google search engine
HomeData Modelling & AIAltitude of largest Triangle that can be inscribed in a Rectangle

Altitude of largest Triangle that can be inscribed in a Rectangle

Given a rectangle of length L and breadth B, the task is to print the maximum integer altitude possible of the largest triangle that can be inscribed in it, such that the altitude of the triangle should be equal to half of the base.

Examples:

Input: L = 3, B = 4
Output: 2

Input: L = 8, B = 9
Output: 4

Input: L = 325, B = 300
Output: 162

Naive Approach: The simplest approach is to iterate over the range [0, min(L, B)] in reverse and if the current value is less than or equal to max(L, B) / 2, then print the current value as the answer and break the loop.

Time Complexity: O(min(L, B))
Auxiliary Space: O(1)

Binary Search Approach: The above approach can be optimized by using the Binary Search technique and observing the fact that it is always optimal to select the base of the triangle on the side with a maximum side length of the rectangle. Follow the steps below to solve the problem:

  • If  L is larger than B, then swap the values.
  • Initialize three variables, say, low as 0, and high as L to perform the binary search on the range [0, L].
  • Also, initialize a variable, say res as 0 to store the maximum possible length of the altitude.
  • Iterate while low is less than or equal to high and perform the following steps:
    • Initialize a variable, say mid, and set it to low + (high – low) / 2.
    • If the value of mid ? B / 2, then assign mid to res and mid +1 to low.
    • Otherwise, set high to mid – 1.
  • Finally, after completing the above steps, print the value obtained in res.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the greatest
// altitude of the largest triangle
// triangle that can be inscribed
// in the rectangle
int largestAltitude(int L, int B)
{
    // If L is greater than B
    if (L > B) {
        swap(B, L);
    }
 
    // Variables to perform binary
    // search
    int low = 0, high = L;
 
    // Stores the maximum altitude
    // possible
    int res = 0;
 
    // Iterate until low is less
    // than high
    while (low <= high) {
 
        // Stores the mid value
        int mid = low + (high - low) / 2;
 
        // If mide is less than
        // or equal to the B/2
        if (mid <= (B / 2)) {
 
            // Update res
            res = mid;
 
            // Update low
            low = mid + 1;
        }
        else
 
            // Update high
            high = mid - 1;
    }
 
    // Print the result
    return res;
}
 
// Driver Code
int main()
{
    // Given Input
    int L = 3;
    int B = 4;
 
    // Function call
    cout << largestAltitude(L, B);
 
    return 0;
}


Java




// Java program for the above approach
import java.io.*;
 
class GFG {
 
// Function to find the greatest
// altitude of the largest triangle
// triangle that can be inscribed
// in the rectangle
static int largestAltitude(int L, int B)
{
     
    // If L is greater than B
    if (L > B)
    {
        int t = L;
        L = B;
        B = t;
    }
   
    // Variables to perform binary
    // search
    int low = 0, high = L;
   
    // Stores the maximum altitude
    // possible
    int res = 0;
   
    // Iterate until low is less
    // than high
    while (low <= high)
    {
         
        // Stores the mid value
        int mid = low + (high - low) / 2;
   
        // If mide is less than
        // or equal to the B/2
        if (mid <= (B / 2))
        {
             
            // Update res
            res = mid;
   
            // Update low
            low = mid + 1;
        }
        else
         
            // Update high
            high = mid - 1;
    }
   
    // Print the result
    return res;
}
 
 
// Driver Code
public static void main(String[] args)
{
     // Given Input
    int L = 3;
    int B = 4;
     
    // Function call
    System.out.print(largestAltitude(L, B));
}
}
 
// This code is contributed by splevel62.


Python3




# Python 3 program for the above approach
 
# Function to find the greatest
# altitude of the largest triangle
# triangle that can be inscribed
# in the rectangle
def largestAltitude(L, B):
   
    # If L is greater than B
    if (L > B):
        temp = B
        B = L
        L = temp
 
    # Variables to perform binary
    # search
    low = 0
    high = L
 
    # Stores the maximum altitude
    # possible
    res = 0
 
    # Iterate until low is less
    # than high
    while (low <= high):
        # Stores the mid value
        mid = low + (high - low) // 2
 
        # If mide is less than
        # or equal to the B/2
        if (mid <= (B / 2)):
            # Update res
            res = mid
 
            # Update low
            low = mid + 1
 
        else:
            # Update high
            high = mid - 1
 
    # Print the result
    return res
 
# Driver Code
if __name__ == '__main__':
   
    # Given Input
    L = 3
    B = 4
 
    # Function call
    print(largestAltitude(L, B))
 
    # This code is contributed by ipg2016107.


C#




// C# program for the above approach
using System;
 
class GFG{
 
// Function to find the greatest
// altitude of the largest triangle
// triangle that can be inscribed
// in the rectangle
static int largestAltitude(int L, int B)
{
     
    // If L is greater than B
    if (L > B)
    {
        int t = L;
        L = B;
        B = t;
    }
   
    // Variables to perform binary
    // search
    int low = 0, high = L;
   
    // Stores the maximum altitude
    // possible
    int res = 0;
   
    // Iterate until low is less
    // than high
    while (low <= high)
    {
         
        // Stores the mid value
        int mid = low + (high - low) / 2;
   
        // If mide is less than
        // or equal to the B/2
        if (mid <= (B / 2))
        {
             
            // Update res
            res = mid;
   
            // Update low
            low = mid + 1;
        }
        else
         
            // Update high
            high = mid - 1;
    }
   
    // Print the result
    return res;
}
 
// Driver Code
public static void Main(string[] args)
{
     
    // Given Input
    int L = 3;
    int B = 4;
     
    // Function call
    Console.Write(largestAltitude(L, B));
}
}
 
// This code is contributed by code_hunt


Javascript




<script>
 
// JavaScript program for the above approach
 
// Function to find the greatest
// altitude of the largest triangle
// triangle that can be inscribed
// in the rectangle
function largestAltitude(L, B) {
  // If L is greater than B
  if (L > B) {
    let temp = B;
    B = L;
    L = temp;
  }
 
  // Variables to perform binary
  // search
  let low = 0,
    high = L;
 
  // Stores the maximum altitude
  // possible
  let res = 0;
 
  // Iterate until low is less
  // than high
  while (low <= high) {
    // Stores the mid value
    let mid = Math.floor(low + (high - low) / 2);
 
    // If mide is less than
    // or equal to the B/2
    if (mid <= Math.floor(B / 2)) {
      // Update res
      res = mid;
 
      // Update low
      low = mid + 1;
    }
 
    // Update high
    else high = mid - 1;
  }
 
  // Print the result
  return res;
}
 
// Driver Code
 
// Given Input
let L = 3;
let B = 4;
 
// Function call
document.write(largestAltitude(L, B));
 
</script>


Output

2

Time Complexity: O(log(min(L, B)))
Auxiliary Space: O(1)

Efficient Approach: The above approach can be further optimized by the observation that by placing the base of the triangle on the side of the length, max(L, B) the maximum altitude will be equal to min(max(L, B)/2, min(L, B)).  Follow the steps below to solve the problem:

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the greatest
// altitude of the largest triangle
// triangle that can be inscribed
// in the rectangle
int largestAltitude(int L, int B)
{
    // If L is greater than B
    if (L > B)
        swap(L, B);
    // Stores the maximum altitude
    // value
    int res = min(B / 2, L);
 
    // Return res
    return res;
}
 
// Driver Code
int main()
{
    // Given Input
    int L = 3;
    int B = 4;
 
    // Function call
    cout << largestAltitude(L, B);
 
    return 0;
}


Java




// C++ program for the above approach
import java.io.*;
class GFG
{
 
// Function to find the greatest
// altitude of the largest triangle
// triangle that can be inscribed
// in the rectangle
static int largestAltitude(int L, int B)
{
   
    // If L is greater than B
    if (L > B)
        {
        int t = L;
        L = B;
        B = t;
    }
   
    // Stores the maximum altitude
    // value
    int res = Math.min(B / 2, L);
 
    // Return res
    return res;
}
 
// Driver Code
public static void main(String[] args)
{
   
    // Given Input
    int L = 3;
    int B = 4;
 
    // Function call
    System.out.print( largestAltitude(L, B));
}
}
 
// This code is contributed by shivanisinghss2110


Python3




# Python program for the above approach
# Function to find the greatest
# altitude of the largest triangle
# triangle that can be inscribed
# in the rectangle
def largestAltitude( L,  B):
 
    # If L is greater than B
    if (L > B):
        temp = B
        B = L
        L = temp
    # Stores the maximum altitude
    # value
    res = min(B // 2, L)
 
    # Return res
    return res
 
 
# Driver Code
# Given Input
L = 3
B = 4
 
# Function call
print(largestAltitude(L, B))
 
# This code is contributed by shivanisinghss2110


C#




// C# program for the above approach
using System;
class GFG
{
 
// Function to find the greatest
// altitude of the largest triangle
// triangle that can be inscribed
// in the rectangle
static int largestAltitude(int L, int B)
{
   
    // If L is greater than B
    if (L > B)
        {
        int t = L;
        L = B;
        B = t;
    }
   
    // Stores the maximum altitude
    // value
    int res = Math.Min(B / 2, L);
 
    // Return res
    return res;
}
 
// Driver Code
public static void Main(String[] args)
{
   
    // Given Input
    int L = 3;
    int B = 4;
 
    // Function call
    Console.Write( largestAltitude(L, B));
}
}
 
// This code is contributed by shivanisinghss2110


Javascript




<script>
// JAvascript. program for the above approach
// Function to find the greatest
// altitude of the largest triangle
// triangle that can be inscribed
// in the rectangle
function largestAltitude(L, B)
{
   
    // If L is greater than B
    if (L > B)
        {
        var t = L;
        L = B;
        B = t;
    }
   
    // Stores the maximum altitude
    // value
    var res = Math.min(B / 2, L);
 
    // Return res
    return res;
}
 
// Driver Code
    // Given Input
    var L = 3;
    var B = 4;
 
    // Function call
    document.write( largestAltitude(L, B));
 
// This code is contributed by shivanisinghss2110
</script>


Output

2

Time Complexity: O(1)
Auxiliary Space: O(1)

 

Last Updated :
10 Aug, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments