Saturday, September 6, 2025
HomeData Modelling & AIAll possible numbers of N digits and base B without leading zeros

All possible numbers of N digits and base B without leading zeros

Given a number of digits ‘N’ and base ‘B’, the task is to count all the ‘N’ digit numbers without leading zeros that are in base ‘B’

Examples:  

Input: N = 2, B = 2
Output: 2
All possible numbers without 
leading zeros are 10 and 11.

Input: N = 5, B = 8
Output: 28672

Approach:  

  • If the base is ‘B’ then every digit of the number can take any value within the range [0, B-1].
  • So, B^{N}      ‘N’ digit numbers are possible with base ‘B’ (including the numbers with leading zeros).
  • And, if we fix the first digit as ‘0’ then the rest of the ‘N-1’ digits can form a total of B^{(N-1)}      numbers.
  • So, the total number of ‘N’ digit numbers with base ‘B’ possible without leading zeros are B^{N}      – B^{(N-1)}    .

Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// function to count
// all permutations
void countPermutations(int N, int B)
{
    // count of
    // all permutations
    int x = pow(B, N);
 
    // count of permutations
    // with leading zeros
    int y = pow(B, N - 1);
 
    // Return the permutations
    // without leading zeros
    cout << x - y << "\n";
}
 
// Driver code
int main()
{
 
    int N = 6;
    int B = 4;
 
    countPermutations(N, B);
 
    return 0;
}


Java




// Java implementation of the approach
 
class GFG
{
// function to count
// all permutations
static void countPermutations(int N, int B)
{
    // count of
    // all permutations
    int x = (int)Math.pow(B, N);
 
    // count of permutations
    // with leading zeros
    int y = (int)Math.pow(B, N - 1);
 
    // Return the permutations
    // without leading zeros
    System.out.println(x - y);
}
 
// Driver code
public static void main(String[] args)
{
    int N = 6;
    int B = 4;
 
    countPermutations(N, B);
}
}
 
// This code is contributed by mits


Python3




# Python3 implementation of the approach
 
# function to count all permutations
def countPermutations(N, B):
 
    # count of all permutations
    x = B ** N
 
    # count of permutations
    # with leading zeros
    y = B ** (N - 1)
 
    # Return the permutations
    # without leading zeros
    print(x - y)
 
# Driver code
if __name__ == "__main__":
 
    N, B = 6, 4
    countPermutations(N, B)
 
# This code is contributed by Rituraj Jain


C#




// C# implementation of the approach
 
using System;
class GFG
{
// function to count
// all permutations
static void countPermutations(int N, int B)
{
    // count of
    // all permutations
    int x = (int)Math.Pow(B, N);
 
    // count of permutations
    // with leading zeros
    int y = (int)Math.Pow(B, N - 1);
 
    // Return the permutations
    // without leading zeros
    Console.WriteLine(x - y);
}
 
// Driver code
public static void Main()
{
    int N = 6;
    int B = 4;
 
    countPermutations(N, B);
}
}
 
// This code is contributed
// by Akanksha Rai(Abby_akku)


PHP




<?php
// PHP implementation of the approach
 
// function to count all permutations
function countPermutations($N, $B)
{
    // count of all permutations
    $x = pow($B, $N);
 
    // count of permutations
    // with leading zeros
    $y = pow($B, $N - 1);
 
    // Return the permutations
    // without leading zeros
    echo ($x - $y), "\n";
}
 
// Driver code
$N = 6;
$B = 4;
 
countPermutations($N, $B);
 
// This code is contributed
// by Sach_Code`
?>


Javascript




<script>
 
// Javascript implementation of the approach
 
// function to count
// all permutations
function countPermutations(N, B)
{
    // count of
    // all permutations
    var x = Math.pow(B, N);
 
    // count of permutations
    // with leading zeros
    var y = Math.pow(B, N - 1);
 
    // Return the permutations
    // without leading zeros
    document.write( x - y );
}
 
// Driver code
var N = 6;
var B = 4;
countPermutations(N, B);
 
</script>


Output: 

3072

 

Time Complexity: O(logn), since pow function takes logn time to find the power of a number to base n.

Auxiliary Space: O(1), since no extra space has been taken.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Dominic
32270 POSTS0 COMMENTS
Milvus
82 POSTS0 COMMENTS
Nango Kala
6639 POSTS0 COMMENTS
Nicole Veronica
11803 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11869 POSTS0 COMMENTS
Shaida Kate Naidoo
6752 POSTS0 COMMENTS
Ted Musemwa
7029 POSTS0 COMMENTS
Thapelo Manthata
6704 POSTS0 COMMENTS
Umr Jansen
6721 POSTS0 COMMENTS