Saturday, December 28, 2024
Google search engine
HomeData Modelling & AIAll possible co-prime distinct element pairs within a range

All possible co-prime distinct element pairs within a range [L, R]

Given a range [L, R], the task is to find all possible co-prime pairs from the range such that an element doesn’t appear in more than a single pair.
Examples: 

Input : L=1 ; R=6
Output : 3
The answer is 3 [(1, 2) (3, 4) (5, 6)], 
all these pairs have GCD 1.

Input : L=2 ; R=4
Output : 1
The answer is 1 [(2, 3) or (3, 4)] 
as '3' can only be chosen for a single pair

Approach: The key observation of the problem is that the numbers with the difference of ‘1’ are always relatively prime to each other i.e. co-primes. 
GCD of this pair is always ‘1’. So, the answer will be (R-L+1)/2 [ (total count of numbers in range) / 2 ] 

  • If R-L+1 is odd then there will be one element left which can not form a pair.
  • If R-L+1 is even then all elements can form pairs.

Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to count possible pairs
void CountPair(int L, int R)
{
 
    // total count of numbers in range
    int x = (R - L + 1);
 
    // Note that if 'x' is odd then
    // there will be '1' element left
    // which can't form a pair
 
    // printing count of pairs
    cout << x / 2 << "\n";
}
 
// Driver code
int main()
{
 
    int L, R;
 
    L = 1, R = 8;
    CountPair(L, R);
 
    return 0;
}


Java




   
// Java implementation of the approach
import java.util.*;
class solution
{
 
// Function to count possible pairs
static void CountPair(int L, int R)
{
 
    // total count of numbers in range
    int x = (R - L + 1);
 
    // Note that if 'x' is odd then
    // there will be '1' element left
    // which can't form a pair
 
    // printing count of pairs
    System.out.println(x / 2 + "\n");
}
 
// Driver code
public static void main(String args[])
{
 
    int L, R;
 
    L = 1; R = 8;
    CountPair(L, R);
 
}
}
//contributed by Arnab Kundu


Python3




# Python3 implementation of
# the approach
 
# Function to count possible
# pairs
def CountPair(L,R):
 
    # total count of numbers
    # in range
    x=(R-L+1)
 
    # Note that if 'x' is odd then
    # there will be '1' element left
    # which can't form a pair
    # printing count of pairs
    print(x//2)
 
# Driver code
if __name__=='__main__':
    L,R=1,8
    CountPair(L,R)
     
# This code is contributed by
# Indrajit Sinha.


C#




// C# implementation of the approach
using System;
class GFG
{
 
// Function to count possible pairs
static void CountPair(int L, int R)
{
 
    // total count of numbers in range
    int x = (R - L + 1);
 
    // Note that if 'x' is odd then
    // there will be '1' element left
    // which can't form a pair
 
    // printing count of pairs
    Console.WriteLine(x / 2 + "\n");
}
 
// Driver code
public static void Main()
{
    int L, R;
 
    L = 1; R = 8;
    CountPair(L, R);
}
}
 
// This code is contributed
// by inder_verma..


PHP




<?php
// PHP implementation of the above approach
 
// Function to count possible pairs
function CountPair($L, $R)
{
 
    // total count of numbers in range
    $x = ($R - $L + 1);
 
    // Note that if 'x' is odd then
    // there will be '1' element left
    // which can't form a pair
 
    // printing count of pairs
    echo $x / 2, "\n";
}
 
// Driver code
$L = 1;
$R = 8;
CountPair($L, $R);
 
// This code is contributed by ANKITRAI1
?>


Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to count possible pairs
function CountPair(L, R)
{
   
    // total count of numbers in range
    let x = (R - L + 1);
   
    // Note that if 'x' is odd then
    // there will be '1' element left
    // which can't form a pair
   
    // printing count of pairs
   document.write(x / 2 + "<br/>");
}
 
 
// driver code
 
    let L, R;
   
    L = 1; R = 8;
    CountPair(L, R);
   
</script>


Output

4

Time Complexity: O(1), since there is no loop or recursion.
Auxiliary Space: O(1), since no extra space has been taken.
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments