A rational number is of the form p/q where p and q are integers. The problem statement is to generate rational number such that any particular number is generated in a finite time. For a given n, we generate all rational numbers where 1 <= p <= n and 1 <= q <= n Examples:
Input : 5
Output : 1, 1/2, 2, 1/3, 2/3, 3/2, 3, 1/4,
3/4, 4/3, 4, 1/5, 2/5, 3/5, 4/5,
5/4, 5/3, 5/2, 5
Input : 7
Output :1, 1/2, 2, 1/3, 2/3, 3/2, 3, 1/4, 3/4,
4/3, 4, 1/5, 2/5, 3/5, 4/5, 5/4, 5/3,
5/2, 5, 1/6, 5/6, 6/5, 6, 1/7, 2/7, 3/7,
4/7, 5/7, 6/7, 7/6, 7/5, 7/4, 7/3, 7/2, 7
In mathematical terms a set is countably infinite if its elements can be mapped on a one to one basis with the set of natural numbers. The problem statement here is to generate combinations of p/q where both p and q are integers and any particular combination of p and q will be reached in a finite no. of steps. If p is incremented 1, 2, 3… etc keeping q constant or vice versa all combinations cannot be reached in finite time. The way to handle this is to imagine the natural numbers arranged as a row, col of a matrix (1, 1) (1, 2) (1, 3) (1, 4) (2, 1) (2, 2) (2, 3) (2, 4) (3, 1) (3, 2) (3, 3) (3, 4) (4, 1) (4, 2) (4, 3) (4, 4) These elements are traversed in an inverted L shape in each iteration (1, 1) (1, 2), (2, 2) (2, 1) (1, 3), (2, 3), (3, 3), (3, 2), (3, 1) yielding 1/1 1/2, 2/2, 2/1 1/3, 2/3, 3/3, 3/2, 3/1 Obviously this will yield duplicates as 2/1 and 4/2 etc, but these can be weeded out by using the Greatest common divisor constraint.
C++
#include <bits/stdc++.h>
using namespace std;
class RationalNumber {
int numerator, denominator;
public :
RationalNumber( int n, int d)
{
numerator = n;
denominator = d;
}
string toString()
{
if (denominator == 1) {
return to_string(numerator);
}
else {
return to_string(numerator) + "/"
+ to_string(denominator);
}
}
};
vector<RationalNumber> generate( int n)
{
vector<RationalNumber> list ;
if (n > 1) {
RationalNumber rational (1, 1);
list.push_back(rational);
}
for ( int loop = 1; loop <= n; loop++) {
int jump = 1;
if (loop % 2 == 0)
jump = 2;
else
jump = 1;
for ( int row = 1; row <= loop - 1; row += jump) {
if (__gcd(row, loop) == 1) {
RationalNumber rational(row, loop);
list.push_back(rational);
}
}
for ( int col = loop - 1; col >= 1; col -= jump) {
if (__gcd(col, loop) == 1) {
RationalNumber rational (loop, col);
list.push_back(rational);
}
}
}
return list;
}
int main()
{
vector<RationalNumber> rationals = generate(7);
for (RationalNumber rational : rationals)
cout << rational.toString() + ", " ;
}
|
Java
import java.util.ArrayList;
import java.util.List;
class Rational {
private static class RationalNumber {
private int numerator;
private int denominator;
public RationalNumber( int numerator, int denominator)
{
this .numerator = numerator;
this .denominator = denominator;
}
@Override
public String toString()
{
if (denominator == 1 ) {
return Integer.toString(numerator);
}
else {
return Integer.toString(numerator) + '/' +
Integer.toString(denominator);
}
}
}
private static int gcd( int num1, int num2)
{
int n1 = num1;
int n2 = num2;
while (n1 != n2) {
if (n1 > n2)
n1 -= n2;
else
n2 -= n1;
}
return n1;
}
private static List<RationalNumber> generate( int n)
{
List<RationalNumber> list = new ArrayList<>();
if (n > 1 ) {
RationalNumber rational = new RationalNumber( 1 , 1 );
list.add(rational);
}
for ( int loop = 1 ; loop <= n; loop++) {
int jump = 1 ;
if (loop % 2 == 0 )
jump = 2 ;
else
jump = 1 ;
for ( int row = 1 ; row <= loop - 1 ; row += jump) {
if (gcd(row, loop) == 1 ) {
RationalNumber rational = new RationalNumber(row, loop);
list.add(rational);
}
}
for ( int col = loop - 1 ; col >= 1 ; col -= jump) {
if (gcd(col, loop) == 1 ) {
RationalNumber rational = new RationalNumber(loop, col);
list.add(rational);
}
}
}
return list;
}
public static void main(String[] args)
{
List<RationalNumber> rationals = generate( 7 );
System.out.println(rationals.stream().
map(RationalNumber::toString).
reduce((x, y) -> x + ", " + y).get());
}
}
|
Python3
from math import gcd
class RationalNumber:
def __init__( self , numerator, denominator):
self .numerator = numerator;
self .denominator = denominator;
def __repr__( self ):
if ( self .denominator = = 1 ):
return str ( self .numerator)
else :
return str ( self .numerator) + '/' + str ( self .denominator);
def generate(n):
list1 = [];
if (n > 1 ):
rational = RationalNumber( 1 , 1 );
list1.append(rational);
for loop in range ( 1 , n + 1 ):
jump = 1 ;
if (loop % 2 = = 0 ):
jump = 2 ;
else :
jump = 1 ;
for row in range ( 1 , loop, jump):
if (gcd(row, loop) = = 1 ):
rational = RationalNumber(row, loop);
list1.append(rational);
for col in range (loop - 1 , 0 , - jump):
if (gcd(col, loop) = = 1 ):
rational = RationalNumber(loop, col);
list1.append(rational);
return list1;
rationals = generate( 7 );
print ( ", " .join( repr (rational) for rational in rationals))
|
C#
using System;
using System.Linq;
using System.Collections.Generic;
public class RationalNumber {
private int numerator;
private int denominator;
public RationalNumber( int numerator, int denominator)
{
this .numerator = numerator;
this .denominator = denominator;
}
public string toString()
{
if (denominator == 1) {
return Convert.ToString(numerator);
}
else {
return Convert.ToString(numerator) + '/'
+ Convert.ToString(denominator);
}
}
}
class Rational {
private static int gcd( int num1, int num2)
{
int n1 = num1;
int n2 = num2;
while (n1 != n2) {
if (n1 > n2)
n1 -= n2;
else
n2 -= n1;
}
return n1;
}
private static List<RationalNumber> generate( int n)
{
List<RationalNumber> list
= new List<RationalNumber>();
if (n > 1) {
RationalNumber rational
= new RationalNumber(1, 1);
list.Add(rational);
}
for ( int loop = 1; loop <= n; loop++) {
int jump = 1;
if (loop % 2 == 0)
jump = 2;
else
jump = 1;
for ( int row = 1; row <= loop - 1;
row += jump) {
if (gcd(row, loop) == 1) {
RationalNumber rational
= new RationalNumber(row, loop);
list.Add(rational);
}
}
for ( int col = loop - 1; col >= 1;
col -= jump) {
if (gcd(col, loop) == 1) {
RationalNumber rational
= new RationalNumber(loop, col);
list.Add(rational);
}
}
}
return list;
}
public static void Main( string [] args)
{
List<RationalNumber> rationals = generate(7);
foreach ( var rational in rationals)
Console.Write(rational.toString() + ", " );
}
}
|
Javascript
class RationalNumber {
constructor(numerator, denominator)
{
this .numerator = numerator;
this .denominator = denominator;
}
toString()
{
if ( this .denominator == 1) {
return ( this .numerator).toString();
}
else {
return ( this .numerator).toString() + '/'
+ ( this .denominator).toString();
}
}
}
function gcd(num1, num2)
{
let n1 = num1;
let n2 = num2;
while (n1 != n2) {
if (n1 > n2)
n1 -= n2;
else
n2 -= n1;
}
return n1;
}
function generate(n)
{
let list = [];
if (n > 1) {
let rational = new RationalNumber(1, 1);
list.push(rational);
}
for ( var loop = 1; loop <= n; loop++) {
var jump = 1;
if (loop % 2 == 0)
jump = 2;
else
jump = 1;
for ( var row = 1; row <= loop - 1; row += jump) {
if (gcd(row, loop) == 1) {
let rational
= new RationalNumber(row, loop);
list.push(rational);
}
}
for ( var col = loop - 1; col >= 1; col -= jump) {
if (gcd(col, loop) == 1) {
let rational
= new RationalNumber(loop, col);
list.push(rational);
}
}
}
return list;
}
let rationals = generate(7);
for ( var rational of rationals)
process.stdout.write(rational.toString() + ", " );
|
Output:
1, 1/2, 2, 1/3, 2/3, 3/2, 3, 1/4, 3/4, 4/3, 4, 1/5, 2/5, 3/5, 4/5, 5/4, 5/3, 5/2, 5, 1/6, 5/6, 6/5, 6, 1/7, 2/7, 3/7, 4/7, 5/7, 6/7, 7/6, 7/5, 7/4, 7/3, 7/2, 7
Time Complexity: O(n2)
Space Complexity: O(n2)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!