Given two polynomial numbers represented by a circular linked list, the task is to add these two polynomials by adding the coefficients of the powers of the same variable.
Note: In given polynomials, the term containing the higher power of x will come first.
Examples:
Input:
1st Number = 5x^2 * y^1 + 4x^1 * y^2 + 3x^1 * y^1 + 2x^1
2nd Number = 3x^1 * y^2 + 4x^1
Output:
5x^2 * y^1 + 7x^1 * y^2 + 3x^1 * y^1 + 6x^1
Explanation:
The coefficient of x^2 * y^1 in 1st numbers is 5 and 0 in the 2nd number. Therefore, sum of the coefficient of x^2 * Y^1 is 5.
The coefficient of x^1 * y^2 in 1st numbers is 4 and 3 in the 2nd number. Therefore, sum of the coefficient of x^1 * Y^2 is 7.
The coefficient of x^1 * y^1 in 1st numbers is 3 and 0 in the 2nd number. Therefore, sum of the coefficient of x^1 * Y^1 is 2.
The coefficient of x^1 * Y^0 in 1st numbers is 2 and 4 in the 2nd number. Therefore, sum of the coefficient of x^1 * Y^0 is 6.Input:
1st Number = 3x^3 * y^2 + 2x^2 + 5x^1 * y^1 + 9y^1 + 2
2nd Number = 4x^3 * y^3 + 2x^3 * y^2 + 1y^2 + 3
Output:
4x^3 * y^3 + 5x^3 * y^2 + 2x^2 + 5x^1 * y^1 + 1y^2 + 9y^1 + 5
Approach: Follow the below steps to solve the problem:
- Create two circular linked lists, where each node will consist of the coefficient, power of x, power of y and pointer to the next node.
- Traverse both the polynomials and check the following conditions:
- If power of x of 1st polynomial is greater than power of x of second polynomial then store node of first polynomial in resultant polynomial and increase counter of polynomial 1.
- If power of x of 1st polynomial is less than power of x of second polynomial then store the node of second polynomial in resultant polynomial and increase counter of polynomial 2.
- If power of x of 1st polynomial is equal to power of x of second polynomial and power of y of 1st polynomial is greater than power of y of 2nd polynomial then store the node of first polynomial in resultant polynomial and increase counter of polynomial 1.
- If power of x of 1st polynomial is equal to power of x of second polynomial and power of y of 1st polynomial is equal to power of y of 2nd polynomial then store the sum of coefficient of both polynomial in resultant polynomial and increase counter of both polynomial 1 and polynomial 2.
- If there are nodes left to be traversed in 1st polynomial or in 2nd polynomial then append them in resultant polynomial.
- Finally, print the resultant polynomial.
Below is the implementation of the above approach:
C++
// C++ program to implement // the above approach #include <bits/stdc++.h> using namespace std; // Structure of a node // in a circular linked list struct Node { // Stores coefficient // of a node int coeff; // Stores power of' // variable x of a node int powx; // Stores power of // variable y of a node int powy; // Stores pointer // to next node struct Node* next; }; // Function to dynamically create a node void create_node( int c, int p1, int p2, struct Node** temp) { // Stores new node struct Node *r; // Stores temp node struct Node *z = *temp; // Dynamically create a new node r = ( struct Node*) malloc ( sizeof ( struct Node)); // Update coefficient // of r r->coeff = c; // Update power of // variable x in r r->powx = p1; // Update power of // variable y in r r->powy = p2; // If z is null if (z == NULL) { // Update temp node (*temp) = r; // Update next pointer // of temp node (*temp)->next = (*temp); } else { // Update next pointer // of z r->next = z->next; // Update next pointer // of z z->next = r; // Update temp Node (*temp) = r; } } // Function to add polynomial of two list void add_poly( struct Node* poly1, struct Node* poly2, struct Node** temp) { // Stores head node of polynomial1 struct Node *start1 = poly1; // Stores head node of polynomial1 struct Node *start2 = poly2; // Update poly1 poly1 = poly1->next; // Update poly2 poly2 = poly2->next; // Traverse both circular linked list while ((poly1 != start1 && poly2 != start2)) { // Stores new node struct Node* r; // Stores temp node struct Node* z = *temp; // Dynamically create a new node r = ( struct Node*) malloc ( sizeof ( struct Node)); // Update coefficient of r r->coeff = 0; // If power of x of poly1 is // greater than power of x of poly2 if (poly1->powx > poly2->powx) { // Update coefficient of r r->coeff = poly1->coeff; // Update of power of x in r r->powx = poly1->powx; // Update of power of y in r r->powy = poly1->powy; // Update poly1 poly1 = poly1->next; } // If power of x of 1st polynomial is // less than power of x of 2nd poly else if (poly1->powx < poly2->powx) { // Update coefficient OF r r->coeff = poly2->coeff; // Update power of x in r r->powx = poly2->powx; // Update power of y in r r->powy = poly2->powy; // Update ploy2 poly2 = poly2->next; } // If power of x of 1st polynomial is // equal to power of x of 2nd poly else { // Power of y of 1st polynomial is // greater than power of y of poly2 if (poly1->powy > poly2->powy) { // Update coefficient of r r->coeff = poly1->coeff; // Update power of x in r r->powx = poly1->powx; // Update power of y in r r->powy = poly1->powy; // Update poly1 poly1 = poly1->next; } // If power of y of poly1 is // less than power of y of ploy2 else if (poly1->powy < poly2->powy) { // Update coefficient of r r->coeff = poly2->coeff; // Update power of x in r r->powx = poly2->powx; // Update power of y in r r->powy = poly2->powy; // Update poly2 poly2 = poly2->next; } // If power of y of 1st poly is // equal to power of y of ploy2 else { // Update coefficient of r r->coeff = poly2->coeff + poly1->coeff; // Update power of x in r r->powx = poly1->powx; // Update power of y in r r->powy = poly1->powy; // Update poly1 poly1 = poly1->next; // Update poly2 poly2 = poly2->next; } } // If z is null if (z == NULL) { // Update temp (*temp) = r; // Update next pointer // of temp (*temp)->next = (*temp); } else { // Update next pointer // of r r->next = z->next; // Update next pointer // of z z->next = r; // Update temp (*temp) = r; } } // If there are nodes left to be // traversed in poly1 or poly2 then // append them in resultant polynomial . while (poly1 != start1 || poly2 != start2) { // If poly1 is not empty if (poly1 != start1) { // Stores new node struct Node *r; // Stores temp node struct Node *z = *temp; // Create new node r = ( struct Node*) malloc ( sizeof ( struct Node)); // Update coefficient or r r->coeff = poly1->coeff; // Update power of x in r r->powx = poly1->powx; // Update power of y in r r->powy = poly1->powy; // Update poly1 poly1 = poly1->next; // If z is null if (z == NULL) { // Update temp (*temp) = r; // Update pointer // to next node (*temp)->next = (*temp); } else { // Update next pointer // of r r->next = z->next; // Update next pointer of z z->next = r; // Update temp (*temp) = r; } } // If poly2 is not empty if (poly2 != start2) { // Stores new node struct Node *r; // Stores temp node struct Node *z = *temp; // Create new node r = ( struct Node*) malloc ( sizeof ( struct Node)); // Update coefficient of z z->coeff = poly2->coeff; // Update power of x in z z->powx = poly2->powx; // Update power of y in z z->powy = poly2->powy; // Update poly2 poly2 = poly2->next; // If z is null if (z == NULL) { // Update temp (*temp) = r; // Update next pointer // of temp (*temp)->next = (*temp); } else { // Update next pointer // of r r->next = z->next; // Update next pointer // of z z->next = r; // Update temp (*temp) = r; } } } // Stores new node struct Node *r; // Stores temp node struct Node *z = *temp; // Create new node r = ( struct Node*) malloc ( sizeof ( struct Node)); // Update coefficient of r r->coeff = 0; // If power of x of start1 greater than // power of x of start2 if (start1->powx > start2->powx) { // Update coefficient of r r->coeff = start1->coeff; // Update power of x in r r->powx = start1->powx; // Update power of y in r r->powy = start1->powy; } // If power of x of start1 less than // power of x of start2 else if (start1->powx < start2->powx) { // Update coefficient of r r->coeff = start2->coeff; // Update power of x in r r->powx = start2->powx; // Update power of y in r r->powy = start2->powy; } // If power of x of start1 equal to // power of x of start2 else { // If power of y of start1 greater than // power of y of start2 if (start1->powy > start2->powy) { // Update coefficient of r r->coeff = start1->coeff; // Update power of x in r r->powx = start1->powx; // Update power of y in r r->powy = start1->powy; } // If power of y of start1 less than // power of y of start2 else if (start1->powy < start2->powy) { // Update coefficient of r r->coeff = start2->coeff; // Update power of x in r r->powx = start2->powx; // Update power of y in r r->powy = poly2->powy; } // If power of y of start1 equal to // power of y of start2 else { // Update coefficient of r r->coeff = start2->coeff + start1->coeff; // Update power of x in r r->powx = start1->powx; // Update power of y in r r->powy = start1->powy; } } // If z is null if (z == NULL) { // Update temp (*temp) = r; // Update next pointer // of temp (*temp)->next = (*temp); } else { // Update next pointer of r r->next = z->next; // Update next pointer of z z->next = r; // Update temp (*temp) = r; } } // Display the circular linked list void display( struct Node* node) { // Stores head node of list struct Node* start = node; // Update node node = node->next; // Traverse the list while (node != start && node->coeff != 0) { // Print coefficient of // current node cout << node->coeff; // If power of variable x // is not zero if (node->powx != 0) cout << "x^" << node->powx; // If power of variable x // and y is not zero if (node->powx != 0 && node->powy != 0) cout<< " * " ; // If power of variable y // is not zero if (node->powy != 0) cout << "y^" << node->powy; // Add next term of // the polynomial if (node != start && node->next->coeff != 0) { cout << " + " ; } // Update node node = node->next; } // Print coefficient of // current node cout << node->coeff; // If power of variable x // is not zero if (node->powx != 0) cout << "x^" << node->powx; // If power of variable y // is not zero if (node->powy != 0) cout << "y^" << node->powy; cout << "\n\n" ; } // Driver Code int main() { // Stores node of // first polynomial struct Node *poly1 = NULL; // Stores node of // second polynomial struct Node *poly2 = NULL; // Stores node of resultant // polynomial struct Node *store = NULL; // Create first polynomial create_node(5, 2, 1, &poly1); create_node(4, 1, 2, &poly1); create_node(3, 1, 1, &poly1); create_node(2, 1, 0, &poly1); create_node(3, 0, 1, &poly1); create_node(2, 0, 0, &poly1); // Create second polynomial create_node(3, 1, 2, &poly2); create_node(4, 1, 0, &poly2); create_node(2, 0, 1, &poly2); create_node(6, 0, 0, &poly2); // Function call to add // two polynomial add_poly(poly1, poly2, &store); // Display polynomial 1 cout << "Polynomial 1" << "\n" ; display(poly1); // Display polynomial 2 cout << "Polynomial 2" << "\n" ; display(poly2); // Display final addition of 2-variable polynomial cout << "Polynomial after addition" << "\n" ; display(store); return 0; } |
Polynomial 1 5x^2 * y^1 + 4x^1 * y^2 + 3x^1 * y^1 + 2x^1 + 3y^1 + 2 Polynomial 2 3x^1 * y^2 + 4x^1 + 2y^1 + 6 Polynomial after addition 5x^2 * y^1 + 7x^1 * y^2 + 3x^1 * y^1 + 6x^1 + 5y^1 + 8
Time Complexity: O(M + N), where M and N are number of nodes in the first and second lists respectively.
Auxiliary Space: O(M + N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!