Tuesday, January 14, 2025
Google search engine
HomeData Modelling & AIAbsolute difference between the Product of Non-Prime numbers and Prime numbers of...

Absolute difference between the Product of Non-Prime numbers and Prime numbers of an Array

Given an array of positive numbers, the task is to calculate the absolute difference between product of non-prime numbers and prime numbers.
Note: 1 is neither prime nor non-prime.
Examples
 

Input : arr[] = {1, 3, 5, 10, 15, 7}
Output : 45
Explanation : Product of non-primes = 150
              Product of primes = 105

Input : arr[] = {3, 4, 6, 7} 
Output : 3

 

Naive Approach: A simple solution is to traverse the array and keep checking for every element if it is prime or not. If the number is prime, then multiply it to product P2 which represents the product of primes else check if it’s not 1 then multiply it to the product of non-primes let’s say P1. After traversing the whole array, take the absolute difference between the two(P1-P2). 

Below is the implementation of the above approach: 

C++14




// C++ code for above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to check whether the
// number is prime or not
bool isPrime(int num)
{
    if (num <= 1) {
        return false;
    }
    for (int i = 2; i <= sqrt(num); i++) {
        if (num % i == 0) {
            return false;
        }
    }
    return true;
}
 
// Function to find the difference between
// the product of non-primes and the
// product of primes of an array.
int calculateDifference(int arr[], int n)
{
    // Store the product of primes in P1 and
    // the product of non primes in P2
    int P1 = 1, P2 = 1;
 
    // Iterate on arr
    for (int i = 0; i < n; i++) {
 
        if (isPrime(arr[i])) {
 
            // the number is prime
            P1 *= arr[i];
        }
        else if (arr[i] != 1) {
 
            // the number is non-prime
            P2 *= arr[i];
        }
    }
 
    // Return the absolute difference
    return abs(P2 - P1);
}
 
// Driver code
int main()
{
    int arr[] = { 1, 3, 5, 10, 15, 7 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    // Find the absolute difference
    cout << calculateDifference(arr, n);
    return 0;
}


Java




// Java code for above approach
import java.util.*;
 
class GFG {
     
    // Function to check whether the
    // number is prime or not
    public static boolean isPrime(int num)
    {
        if (num <= 1) {
            return false;
        }
        for (int i = 2; i <= Math.sqrt(num); i++) {
            if (num % i == 0) {
                return false;
            }
        }
        return true;
    }
     
    // Function to find the difference between
    // the product of non-primes and the
    // product of primes of an array.
    public static int calculateDifference(int arr[], int n)
    {
        // Store the product of primes in P1 and
        // the product of non primes in P2
        int P1 = 1, P2 = 1;
     
        // Iterate on arr
        for (int i = 0; i < n; i++) {
     
            if (isPrime(arr[i])) {
     
                // the number is prime
                P1 *= arr[i];
            }
            else if (arr[i] != 1) {
     
                // the number is non-prime
                P2 *= arr[i];
            }
        }
     
        // Return the absolute difference
        return Math.abs(P2 - P1);
    }
     
    // Driver code
    public static void main(String[] args)
    {
        int arr[] = { 1, 3, 5, 10, 15, 7 };
        int n = arr.length;
     
        // Find the absolute difference
        System.out.println(calculateDifference(arr, n));
    }
}
// This code is contributed by prasad264


Python3




# python code for above approach
import math
 
# Function to check whether the
# number is prime or not
def isPrime(num):
    if num <= 1:
        return False
    for i in range(2, int(math.sqrt(num)) + 1):
        if num % i == 0:
            return False
    return True
 
# Function to find the difference between
# the product of non-primes and the
# product of primes of an array.
def calculateDifference(arr, n):
     
    # Store the product of primes in P1 and
    # the product of non primes in P2
    P1, P2 = 1, 1
 
    # Iterate on arr
    for i in range(n):
        if isPrime(arr[i]):
            # the number is prime
            P1 *= arr[i]
             
        elif arr[i] != 1:
            # the number is non-prime
            P2 *= arr[i]
 
    # Return the absolute difference
    return abs(P2 - P1)
 
# Driver code
arr = [1, 3, 5, 10, 15, 7]
n = len(arr)
 
# Find the absolute difference
print(calculateDifference(arr, n))


C#




using System;
 
public class Program
{
    // Function to check whether the
    // number is prime or not
    public static bool IsPrime(int num)
    {
        if (num <= 1) {
            return false;
        }
        for (int i = 2; i <= Math.Sqrt(num); i++) {
            if (num % i == 0) {
                return false;
            }
        }
        return true;
    }
 
    // Function to find the difference between
    // the product of non-primes and the
    // product of primes of an array.
    public static int CalculateDifference(int[] arr, int n)
    {
        // Store the product of primes in P1 and
        // the product of non primes in P2
        int P1 = 1, P2 = 1;
 
        // Iterate on arr
        for (int i = 0; i < n; i++) {
 
            if (IsPrime(arr[i])) {
 
                // the number is prime
                P1 *= arr[i];
            }
            else if (arr[i] != 1) {
 
                // the number is non-prime
                P2 *= arr[i];
            }
        }
 
        // Return the absolute difference
        return Math.Abs(P2 - P1);
    }
 
    // Driver code
    public static void Main()
    {
        int[] arr = { 1, 3, 5, 10, 15, 7 };
        int n = arr.Length;
 
        // Find the absolute difference
        Console.WriteLine(CalculateDifference(arr, n));
    }
}


Javascript




// JavaScript code for above approach
 
// Function to check whether the
// number is prime or not
function isPrime(num) {
    if (num <= 1) {
        return false;
    }
    for (let i = 2; i <= Math.sqrt(num); i++) {
        if (num % i === 0) {
            return false;
        }
    }
    return true;
}
 
// Function to find the difference between
// the product of non-primes and the
// product of primes of an array.
function calculateDifference(arr, n) {
     
    // Store the product of primes in P1 and
    // the product of non primes in P2
    let P1 = 1, P2 = 1;
 
    // Iterate on arr
    for (let i = 0; i < n; i++) {
         
        if (isPrime(arr[i])) {
             
            // the number is prime
            P1 *= arr[i];
        }
        else if (arr[i] !== 1) {
             
            // the number is non-prime
            P2 *= arr[i];
        }
    }
 
    // Return the absolute difference
    return Math.abs(P2 - P1);
}
 
// Driver code
let arr = [1, 3, 5, 10, 15, 7];
let n = arr.length;
 
// Find the absolute difference
console.log(calculateDifference(arr, n));


Output

45

Time Complexity: O(N*sqrt(N))

Space Complexity: O(1)

Efficient Approach: Generate all primes up to the maximum element of the array using the sieve of Eratosthenes and store them in a hash. Now, traverse the array and check if the number is present in the hash map. Then, multiply these numbers to product P2 else check if it’s not 1, then multiply it to product P1. After traversing the whole array, display the absolute difference between the two.
Below is the implementation of the above approach: 
 

C++




// C++ program to find the Absolute Difference
// between the Product of Non-Prime numbers
// and Prime numbers of an Array
   
#include <bits/stdc++.h>
using namespace std;
   
// Function to find the difference between
// the product of non-primes and the
// product of primes of an array.
int calculateDifference(int arr[], int n)
{
    // Find maximum value in the array
    int max_val = *max_element(arr, arr + n);
   
    // USE SIEVE TO FIND ALL PRIME NUMBERS LESS
    // THAN OR EQUAL TO max_val
    // Create a boolean array "prime[0..n]". A
    // value in prime[i] will finally be false
    // if i is Not a prime, else true.
    vector<bool> prime(max_val + 1, true);
   
    // Remaining part of SIEVE
    prime[0] = false;
    prime[1] = false;
    for (int p = 2; p * p <= max_val; p++) {
   
        // If prime[p] is not changed, then
        // it is a prime
        if (prime[p] == true) {
   
            // Update all multiples of p
            for (int i = p * 2; i <= max_val; i += p)
                prime[i] = false;
        }
    }
   
    // Store the product of primes in P1 and
    // the product of non primes in P2
    int P1 = 1, P2 = 1;
    for (int i = 0; i < n; i++) {
   
        if (prime[arr[i]]) {
   
            // the number is prime
            P1 *= arr[i];
        }
        else if (arr[i] != 1) {
   
            // the number is non-prime
            P2 *= arr[i];
        }
    }
   
    // Return the absolute difference
    return abs(P2 - P1);
}
   
// Driver Code
int main()
{
    int arr[] = { 1, 3, 5, 10, 15, 7 };
    int n     = sizeof(arr) / sizeof(arr[0]);
   
    // Find the absolute difference
    cout << calculateDifference(arr, n);
   
    return 0;
}


Java




// Java program to find the Absolute Difference
// between the Product of Non-Prime numbers
// and Prime numbers of an Array
import java.util.*; 
import java.util.Arrays;
import java.util.Collections;
 
   
class GFG{
 
    // Function to find the difference between
    // the product of non-primes and the
    // product of primes of an array.
    public static int calculateDifference(int []arr, int n)
    {
        // Find maximum value in the array
 
        int max_val = Arrays.stream(arr).max().getAsInt();
       
        // USE SIEVE TO FIND ALL PRIME NUMBERS LESS
        // THAN OR EQUAL TO max_val
        // Create a boolean array "prime[0..n]". A
        // value in prime[i] will finally be false
        // if i is Not a prime, else true.
        boolean[] prime = new boolean[max_val + 1];
        Arrays.fill(prime, true);
       
        // Remaining part of SIEVE
        prime[0] = false;
        prime[1] = false;
        for (int p = 2; p * p <= max_val; p++) {
       
            // If prime[p] is not changed, then
            // it is a prime
            if (prime[p] == true) {
       
                // Update all multiples of p
                for (int i = p * 2 ;i <= max_val ;i += p)
                    prime[i] = false;
            }
        }
       
        // Store the product of primes in P1 and
        // the product of non primes in P2
        int P1 = 1, P2 = 1;
        for (int i = 0; i < n; i++) {
       
            if (prime[arr[i]]) {
       
                // the number is prime
                P1 *= arr[i];
            }
            else if (arr[i] != 1) {
       
                // the number is non-prime
                P2 *= arr[i];
            }
        }
       
        // Return the absolute difference
        return Math.abs(P2 - P1);
    }
       
    // Driver Code
    public static void main(String []args)
    {
        int[] arr = new int []{ 1, 3, 5, 10, 15, 7 };
        int n     = arr.length;
       
        // Find the absolute difference
        System.out.println(calculateDifference(arr, n));
       
        System.exit(0);
    }
}
// This code is contributed
// by Harshit Saini 


Python3




# Python3 program to find the Absolute Difference
# between the Product of Non-Prime numbers
# and Prime numbers of an Array
 
   
# Function to find the difference between
# the product of non-primes and the
# product of primes of an array.
def calculateDifference(arr, n):
    # Find maximum value in the array
    max_val = max(arr)
   
    # USE SIEVE TO FIND ALL PRIME NUMBERS LESS
    # THAN OR EQUAL TO max_val
    # Create a boolean array "prime[0..n]". A
    # value in prime[i] will finally be false
    # if i is Not a prime, else true.
 
    prime    = (max_val + 1) * [True]
   
    # Remaining part of SIEVE
    prime[0] = False
    prime[1] = False
    p = 2
 
    while p * p <= max_val:
 
        # If prime[p] is not changed, then
        # it is a prime
        if prime[p] == True:
   
            # Update all multiples of p
            for i in range(p * 2, max_val+1, p):
                prime[i] = False
        p += 1
   
    # Store the product of primes in P1 and
    # the product of non primes in P2
    P1 = 1 ; P2 = 1
    for i in range(n):
 
        if prime[arr[i]]:
            # the number is prime
            P1 *= arr[i]
 
        elif arr[i] != 1:
            # the number is non-prime
            P2 *= arr[i]
   
    # Return the absolute difference
    return abs(P2 - P1)
   
# Driver Code
if __name__ == '__main__':
    arr   = [ 1, 3, 5, 10, 15, 7 ]
    n     = len(arr)
   
    # Find the absolute difference
    print(calculateDifference(arr, n))
# This code is contributed
# by Harshit Saini


C#




// C# program to find the Absolute Difference
// between the Product of Non-Prime numbers
// and Prime numbers of an Array
using System;
using System.Linq;
   
class GFG{
 
    // Function to find the difference between
    // the product of non-primes and the
    // product of primes of an array.
    static int calculateDifference(int []arr, int n)
    {
        // Find maximum value in the array
        int max_val = arr.Max();
       
        // USE SIEVE TO FIND ALL PRIME NUMBERS LESS
        // THAN OR EQUAL TO max_val
        // Create a boolean array "prime[0..n]". A
        // value in prime[i] will finally be false
        // if i is Not a prime, else true.
        var prime   = Enumerable.Repeat(true,
                                    max_val+1).ToArray();
       
        // Remaining part of SIEVE
        prime[0] = false;
        prime[1] = false;
        for (int p = 2; p * p <= max_val; p++) {
       
            // If prime[p] is not changed, then
            // it is a prime
            if (prime[p] == true) {
       
                // Update all multiples of p
                for (int i = p * 2; i <= max_val; i += p)
                    prime[i] = false;
            }
        }
       
        // Store the product of primes in P1 and
        // the product of non primes in P2
        int P1 = 1, P2 = 1;
        for (int i = 0; i < n; i++) {
       
            if (prime[arr[i]]) {
       
                // the number is prime
                P1 *= arr[i];
            }
            else if (arr[i] != 1) {
       
                // the number is non-prime
                P2 *= arr[i];
            }
        }
       
        // Return the absolute difference
        return Math.Abs(P2 - P1);
    }
       
    // Driver Code
    public static void Main()
    {
        int[] arr = new int []{ 1, 3, 5, 10, 15, 7 };
        int n     = arr.Length;
       
        // Find the absolute difference
        Console.WriteLine(calculateDifference(arr, n));
    }
}
// This code is contributed
// by Harshit Saini


PHP




<?php
// PHP program to find the Absolute Difference
// between the Product of Non-Prime numbers
// and Prime numbers of an Array
   
 
// Function to find the difference between
// the product of non-primes and the
// product of primes of an array.
function calculateDifference($arr, $n){
 
    // Find maximum value in the array
    $max_val = max($arr);
   
    // USE SIEVE TO FIND ALL PRIME NUMBERS LESS
    // THAN OR EQUAL TO max_val
    // Create a boolean array "prime[0..n]". A
    // value in prime[i] will finally be false
    // if i is Not a prime, else true.
    $prime   = array_fill(0 ,$max_val ,true);
   
    // Remaining part of SIEVE
    $prime[0] = false;
    $prime[1] = false;
    for ($p = 2; $p * $p <= $max_val; $p++) {
   
        // If prime[p] is not changed, then
        // it is a prime
        if ($prime[$p] == true) {
   
            // Update all multiples of p
            for ($i = $p * 2; $i <= $max_val; $i += $p)
                $prime[$i] = false;
        }
    }
   
    // Store the product of primes in P1 and
    // the product of non primes in P2
    $P1 = 1;
    $P2 = 1;
    for ($i = 0; $i < $n; $i++) {
   
        if ($prime[$arr[$i]]) {
   
            // the number is prime
            $P1 *= $arr[$i];
        }
        else if ($arr[$i] != 1) {
   
            // the number is non-prime
            $P2 *= $arr[$i];
        }
    }
   
    // Return the absolute difference
    return abs($P2 - $P1);
}
   
// Driver Code
$arr = array( 1, 3, 5, 10, 15, 7 );
$n   = count($arr, COUNT_NORMAL);
 
// Find the absolute difference
echo CalculateDifference($arr, $n);
 
// This code is contributed
// by Harshit Saini
?>


Javascript




<script>
 
// Javascript program to find the Absolute Difference
// between the Product of Non-Prime numbers
// and Prime numbers of an Array
 
    // Function to find the difference between
    // the product of non-primes and the
    // product of primes of an array.
    function calculateDifference(arr , n)
    {
        // Find maximum value in the array
 
        var max_val = Math.max.apply(Math,arr);
 
        // USE SIEVE TO FIND ALL PRIME NUMBERS LESS
        // THAN OR EQUAL TO max_val
        // Create a boolean array "prime[0..n]". A
        // value in prime[i] will finally be false
        // if i is Not a prime, else true.
        var prime = Array(max_val + 1).fill(true);
     
 
        // Remaining part of SIEVE
        prime[0] = false;
        prime[1] = false;
        for (p = 2; p * p <= max_val; p++) {
 
            // If prime[p] is not changed, then
            // it is a prime
            if (prime[p] == true) {
 
                // Update all multiples of p
                for (i = p * 2; i <= max_val; i += p)
                    prime[i] = false;
            }
        }
 
        // Store the product of primes in P1 and
        // the product of non primes in P2
        var P1 = 1, P2 = 1;
        for (i = 0; i < n; i++) {
 
            if (prime[arr[i]]) {
 
                // the number is prime
                P1 *= arr[i];
            } else if (arr[i] != 1) {
 
                // the number is non-prime
                P2 *= arr[i];
            }
        }
 
        // Return the absolute difference
        return Math.abs(P2 - P1);
    }
 
    // Driver Code
     
        var arr = [ 1, 3, 5, 10, 15, 7 ];
        var n = arr.length;
 
        // Find the absolute difference
        document.write(calculateDifference(arr, n));
 
// This code contributed by gauravrajput1
 
</script>


Output

45

Time Complexity: O(N * log(log(N)) 
Space Complexity: O(MAX(N, max_val)), where max_val is the maximum value of an element in the given array.
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments