TensorFlow is open-source Python library designed by Google to develop Machine Learning models and deep learning neural networks.
is_nan() returns true if element is NaN otherwise it returns false.
Syntax: tensorflow.math.is_NaN( x, name)
Parameters:
- x: It is a tensor. Allowed dtypes are bfloat16, half, float32, float64.
- name(optional): It defines the name of the operation
Returns: It returns a tensor of dtype bool.
Example 1:
Python3
# importing the library import tensorflow as tf import numpy as np # Initializing the input tensor a = tf.constant([ 7 , 8 , 13 , 11 , np.inf], dtype = tf.float64) # Printing the input tensor print ( 'a: ' , a) # Calculating the result res = tf.math.is_nan(a) # Printing the result print ( 'Result: ' , res) |
Output:
a: tf.Tensor([ 7. 8. 13. 11. inf], shape=(5, ), dtype=float64) Result: tf.Tensor([False False False False False], shape=(5, ), dtype=bool)
Example 2: This example uses numpy nan.
Python3
# Importing the library import tensorflow as tf import numpy as np # Initializing the input tensor a = tf.constant([ 7 , 8 , 13 , 11 , np.nan], dtype = tf.float64) # Printing the input tensor print ( 'a: ' , a) # Calculating the result res = tf.math.is_nan(a) # Printing the result print ( 'Result: ' , res) |
Output:
a: tf.Tensor([ 7. 8. 13. 11. nan], shape=(5, ), dtype=float64) Result: tf.Tensor([False False False False True], shape=(5, ), dtype=bool)