Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. Pyplot is a state-based interface to a Matplotlib module which provides a MATLAB-like interface. There are various plots which can be used in Pyplot are Line Plot, Contour, Histogram, Scatter, 3D Plot, etc.
matplotlib.pyplot.sci() Function
The sci() function in pyplot module of matplotlib library is used to set the current image.
Syntax: matplotlib.pyplot.sci(im)
Parameters:
- im: This image will be the target of colormap functions.
Returns: This method does not return any value.
Below examples illustrate the matplotlib.pyplot.sci() function in matplotlib.pyplot:
Example 1:
import matplotlib.pyplot as plt from matplotlib.collections import LineCollection from matplotlib import colors as mcolors import numpy as np N = 50 x = np.arange(N) ys = [x + i for i in x] fig, ax = plt.subplots() ax.set_xlim( 0 , 20 ) ax.set_ylim( 0 , 20 ) line_segments = LineCollection([np.column_stack([x, y]) for y in ys], linewidths = ( 0.5 , 1 , 1.5 , 2 ), linestyles = 'dashed' , color = "#eeffdd" ) line_segments.set_array( 1 / (x + 1 )) ax.add_collection(line_segments) line_segments.set_array(x) plt.sci(line_segments) plt.title( 'matplotlib.pyplot.sci() Example' ) plt.show() |
Output:
Example 2:
import matplotlib.pyplot as plt from matplotlib.collections import EventCollection from matplotlib.collections import LineCollection import numpy as np np.random.seed( 19680801 ) xvalue = np.random.random([ 2 , 10 ]) xvalue1 = xvalue[ 0 , :] xvalue2 = xvalue[ 1 , :] xvalue1.sort() xvalue2.sort() yvalue1 = xvalue1 * * 4 yvalue2 = 1 - xvalue2 * * 6 fig = plt.figure() ax = fig.add_subplot( 1 , 1 , 1 ) ax.plot(xvalue1, yvalue1, color = 'tab:blue' ) ax.plot(xvalue2, yvalue2, color = 'tab:green' ) xresult1 = EventCollection(xvalue1, color = 'tab:blue' ) yresult1 = EventCollection(yvalue1, color = 'tab:blue' , orientation = 'vertical' ) ax.add_collection(xresult1) ax.add_collection(yresult1) plt.sci(xresult1) plt.title( 'matplotlib.pyplot.sci() Example' ) plt.show() |
Output: