scipy.stats.arcsine() is an arcsine continuous random variable that is defined with a standard format and some shape parameters to complete its specification.
Parameters :
q : lower and upper tail probability
x : quantiles
loc : [optional]location parameter. Default = 0
scale : [optional]scale parameter. Default = 1
size : [tuple of ints, optional] shape or random variates.
moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).Results : arcsine continuous random variable
Code #1 : Creating arcsine continuous random variable
# importing scipy from scipy.stats import arcsine numargs = arcsine.numargs [ ] = [ 0.6 , ] * numargs rv = arcsine() print ( "RV : \n" , rv) |
Output :
RV : <scipy.stats._distn_infrastructure.rv_frozen object at 0x0000029484D796D8>
Code #2 : arcsine random variates and probability distribution function.
quantile = np.arange ( 0.01 , 1 , 0.1 ) # Random Variates R = arcsine.rvs(scale = 2 , size = 10 ) print ( "Random Variates : \n" , R) # PDF R = arcsine.pdf(x = quantile, scale = 2 ) print ( "\nProbability Distribution : \n" , R) |
Output:
Random Variates : [1.17353658 1.96350916 1.73419819 0.71255312 0.28760466 1.54410451 1.9644408 0.35014597 0.26798525 0.24599504] Probability Distribution : [2.25643896 0.69810843 0.51917523 0.43977033 0.39423905 0.3651505 0.34568283 0.33260295 0.32421577 0.31960693]
Code #3 : Graphical Representation.
# libraries import numpy as np import matplotlib.pyplot as plt distribution = np.linspace( 0 , np.minimum(rv.dist.b, 3 )) print ( "Distribution : \n" , distribution) plot = plt.plot(distribution, rv.pdf(distribution)) |
Output :
Distribution : [0. 0.02040816 0.04081633 0.06122449 0.08163265 0.10204082 0.12244898 0.14285714 0.16326531 0.18367347 0.20408163 0.2244898 0.24489796 0.26530612 0.28571429 0.30612245 0.32653061 0.34693878 0.36734694 0.3877551 0.40816327 0.42857143 0.44897959 0.46938776 0.48979592 0.51020408 0.53061224 0.55102041 0.57142857 0.59183673 0.6122449 0.63265306 0.65306122 0.67346939 0.69387755 0.71428571 0.73469388 0.75510204 0.7755102 0.79591837 0.81632653 0.83673469 0.85714286 0.87755102 0.89795918 0.91836735 0.93877551 0.95918367 0.97959184 1. ]
Code #4: Varying Location and Scale
from scipy.stats import arcsine import matplotlib.pyplot as plt import numpy as np a = 2 b = 2 x = np.linspace( 0 , np.minimum(rv.dist.b, 3 )) # Varying location and scale y1 = arcsine.pdf(x, - 0.1 , . 8 ) y2 = arcsine.pdf(x, - 3.25 , 3.25 ) plt.plot(x, y1, "*" , x, y2, "r--" ) |