Permutation.cycle_structure() : cycle_structure() is a sympy Python library function that returns the cycle structure of the permutation as a dictionary and this will indicate the multiplicity of each cycle length.
Syntax :
sympy.combinatorics.permutations.Permutation.cycle_structure()Return :
cycle structure of the permutation as a dictionary
Code #1 : cycle_structure() Example
# Python code explaining # SymPy.Permutation.cycle_structure() # importing SymPy libraries from sympy.combinatorics.partitions import Partition from sympy.combinatorics.permutations import Permutation # Using from # sympy.combinatorics.permutations.Permutation.cycle_structure() method # creating Permutation a = Permutation([ 2 , 0 , 3 , 1 , 5 , 4 ]) b = Permutation([ 3 , 1 , 2 , 5 , 4 , 0 ]) print ( "Permutation a - cycle_structure form : " , a.cycle_structure) print ( "Permutation b - cycle_structure form : " , b.cycle_structure) |
Output :
Permutation a – cycle_structure form : {2: 1, 4: 1}
Permutation b – cycle_structure form : {1: 3, 3: 1}
Code #2 : cycle_structure() Example – 2D Permutation
# Python code explaining # SymPy.Permutation.cycle_structure() # importing SymPy libraries from sympy.combinatorics.partitions import Partition from sympy.combinatorics.permutations import Permutation # Using from # sympy.combinatorics.permutations.Permutation.cycle_structure() method # creating Permutation a = Permutation([[ 2 , 4 , 0 ], [ 3 , 1 , 2 ], [ 1 , 5 , 6 ]]) # SELF COMMUTATING print ( "Permutation a - cycle_structure form : " , a.cycle_structure) |
Output :
Permutation a – cycle_structure form : {7: 1}