Sunday, January 19, 2025
Google search engine
HomeLanguagesscipy stats.genexpon() | Python

scipy stats.genexpon() | Python

scipy.stats.genexpon() is an generalized exponential continuous random variable that is defined with a standard format and some shape parameters to complete its specification.

Parameters :
-> q : lower and upper tail probability
-> x : quantiles
-> loc : [optional]location parameter. Default = 0
-> scale : [optional]scale parameter. Default = 1
-> size : [tuple of ints, optional] shape or random variates.
-> a, b, c : shape parameters
-> moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).

Results : generalized exponential continuous random variable

Code #1 : Creating generalized exponential continuous random variable




from scipy.stats import genexpon 
  
numargs = genexpon .numargs
[a, b, c] = [0.7, ] * numargs
rv = genexpon (a, b, c)
  
print ("RV : \n", rv) 


Output :

RV : 
 <scipy.stats._distn_infrastructure.rv_frozen object at 0x0000018D57997F60>

Code #2 : generalized exponential random variates.




import numpy as np
quantile = np.arange (0.01, 1, 0.1)
   
# Random Variates
R = genexpon.rvs(a, scale = 2,  size = 10)
print ("Random Variates : \n", R)


Output :

Random Variates : 
 [0.74505484 2.02790441 2.06823675 3.96275674 1.24274054 3.71331036
 0.53957521 0.37359838 2.53934153 2.36254065]

Probability Distribution : 
 [0.43109163 0.45222638 0.47102054 0.48773188 0.50258763 0.51578837
 0.52751153 0.53791424 0.54713591 0.55530037]

Code #3 : Graphical Representation.




import numpy as np
import matplotlib.pyplot as plt
  
distribution = np.linspace(0, np.minimum(rv.dist.b, 3))
print("Distribution : \n", distribution)
  
plot = plt.plot(distribution, rv.pdf(distribution))


Output :

Distribution : 
 [0.         0.06122449 0.12244898 0.18367347 0.24489796 0.30612245
 0.36734694 0.42857143 0.48979592 0.55102041 0.6122449  0.67346939
 0.73469388 0.79591837 0.85714286 0.91836735 0.97959184 1.04081633
 1.10204082 1.16326531 1.2244898  1.28571429 1.34693878 1.40816327
 1.46938776 1.53061224 1.59183673 1.65306122 1.71428571 1.7755102
 1.83673469 1.89795918 1.95918367 2.02040816 2.08163265 2.14285714
 2.20408163 2.26530612 2.32653061 2.3877551  2.44897959 2.51020408
 2.57142857 2.63265306 2.69387755 2.75510204 2.81632653 2.87755102
 2.93877551 3.        ]

Code #4 : Varying Positional Arguments




import matplotlib.pyplot as plt
import numpy as np
  
x = np.linspace(0, 5, 100)
  
# Varying positional arguments
y1 = genexpon.pdf(x, a, 1, 3)
y2 = genexpon.pdf(x, a, 1, 4)
plt.plot(x, y1, "*", x, y2, "r--")


Output :

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments