TensorFlow is open-source python library designed by Google to develop Machine Learning models and deep learning neural networks. TensorFlow raw_ops provides low level access to all TensorFlow operations. Exp() is used to find element wise exponential of x.
For complex numbers e^(x+iy) = e^x * e^iy = e^x * (cos y + i sin y)
Syntax: tf.raw_ops.Exp(x, name)
Parameters:
- x: It’s the input tensor. Allowed dtype for this tensor are bfloat16, half, float32, float64, complex64, complex128.
- name(optional): It defines the name for the operation.
Returns: It returns a tensor of same dtype as x.
Note: It only takes keyword arguments.
Example 1:
Python3
# Importing the library import tensorflow as tf # Initializing the input tensor a = tf.constant([ 1 , 2 , 3 , 4 , 5 ], dtype = tf.float64) # Printing the input tensor print ( 'Input: ' , a) # Calculating exponential res = tf.raw_ops.Exp(x = a) # Printing the result print ( 'Result: ' , res) |
Output:
Input: tf.Tensor([1. 2. 3. 4. 5.], shape=(5, ), dtype=float64) Result: tf.Tensor([ 2.71828183 7.3890561 20.08553692 54.59815003 148.4131591 ], shape=(5, ), dtype=float64)
Example 2: Visualization
Python3
# importing the library import tensorflow as tf import matplotlib.pyplot as plt # Initializing the input tensor a = tf.constant([ 1 , 2 , 3 , 4 , 5 ], dtype = tf.float64) # Calculating exponential res = tf.raw_ops.Exp(x = a) # Plotting the graph plt.plot(a, res, color = 'green' ) plt.title( 'tensorflow.raw_ops.Exp' ) plt.xlabel( 'Input' ) plt.ylabel( 'Result' ) plt.show() |
Output: