Friday, September 5, 2025
HomeLanguagesPython – tensorflow.math.confusion_matrix()

Python – tensorflow.math.confusion_matrix()

TensorFlow is open-source Python library designed by Google to develop Machine Learning models and deep learning  neural networks.  confusion_matrix() is used to find the confusion matrix from predictions and labels.

Syntax: tensorflow.math.confusion_matrix( labels, predictions, num_classes, weights, dtype,name)
 

Parameters:

  • labels: It’s a 1-D Tensor which contains real labels for the classification task.
  • predictions: It’s also a 1-D Tensor of same shape as labels. It’s value represents the predicted class.
  • num_classes(optional): It is the possible number of labels/class classification task might have. If it’s not provided then num_classes will be one more than the maximum value in either predictions or labels.
  • weight(optional): It’s a Tensor of same shape as predictions whose values define the corresponding weight for each prediction.
  • dtype(optional): It defines the dtype of returned confusion matrix. Default if tensorflow.dtypes.int32.
  • name(optional): Defines the name for the operation.
     

Returns:
It returns a confusion matrix of shape [n,n] where n is the possible number of labels.
 

Example 1:

Python3




# importing the library
import tensorflow as tf
 
# Initializing the input tensor
labels = tf.constant([1,3,4],dtype = tf.int32)
predictions = tf.constant([1,2,3],dtype = tf.int32)
 
# Printing the input tensor
print('labels: ',labels)
print('Predictions: ',predictions)
 
# Evaluating confusion matrix
res = tf.math.confusion_matrix(labels,predictions)
 
# Printing the result
print('Confusion_matrix: ',res)


Output:

labels:  tf.Tensor([1 3 4], shape=(3,), dtype=int32)
Predictions:  tf.Tensor([1 2 3], shape=(3,), dtype=int32)
Confusion_matrix:  tf.Tensor(
[[0 0 0 0 0]
 [0 1 0 0 0]
 [0 0 0 0 0]
 [0 0 1 0 0]
 [0 0 0 1 0]], shape=(5, 5), dtype=int32)

Example2: This example provide the weights to all predictions.

Python3




# importing the library
import tensorflow as tf
 
# Initializing the input tensor
labels = tf.constant([1,3,4],dtype = tf.int32)
predictions = tf.constant([1,2,4],dtype = tf.int32)
weights = tf.constant([1,2,2], dtype = tf.int32)
 
# Printing the input tensor
print('labels: ',labels)
print('Predictions: ',predictions)
print('Weights: ',weights)
 
# Evaluating confusion matrix
res = tf.math.confusion_matrix(labels, predictions, weights=weights)
 
# Printing the result
print('Confusion_matrix: ',res)


Output:

labels:  tf.Tensor([1 3 4], shape=(3,), dtype=int32)
Predictions:  tf.Tensor([1 2 4], shape=(3,), dtype=int32)
Weights:  tf.Tensor([1 2 2], shape=(3,), dtype=int32)
Confusion_matrix:  tf.Tensor(
[[0 0 0 0 0]
 [0 1 0 0 0]
 [0 0 0 0 0]
 [0 0 2 0 0]
 [0 0 0 0 2]], shape=(5, 5), dtype=int32)
RELATED ARTICLES

Most Popular

Dominic
32264 POSTS0 COMMENTS
Milvus
81 POSTS0 COMMENTS
Nango Kala
6634 POSTS0 COMMENTS
Nicole Veronica
11801 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11863 POSTS0 COMMENTS
Shaida Kate Naidoo
6750 POSTS0 COMMENTS
Ted Musemwa
7025 POSTS0 COMMENTS
Thapelo Manthata
6701 POSTS0 COMMENTS
Umr Jansen
6718 POSTS0 COMMENTS