Sunday, October 12, 2025
HomeLanguagesHow To Convert Numpy Array To Tensor?

How To Convert Numpy Array To Tensor?

The tf.convert_to_tensor() method from the TensorFlow library is used to convert a NumPy array into a Tensor. The distinction between a NumPy array and a tensor is that tensors, unlike NumPy arrays, are supported by accelerator memory such as the GPU, they have a faster processing speed. there are a few other ways to achieve this task. 

tf.convert_to_tensor() function:

Syntax:

tf.convert_to_tensor( value, dtype=None, dtype_hint=None, name=None)

parameters:

  • value : The type of an object with a registered Tensor conversion function.
  • dtype: by default it is None. The returned tensor’s element type is optional. If the type isn’t specified, the type is inferred from the value type.
  • dtype_hint: by default None. When dtype is None, this is an optional component type for the returned tensor. When converting to a tensor, a caller may not have a datatype in mind, hence dtype hint can be used as a  preference. This parameter has no effect if the conversion to dtype hint is not possible.
  • name : by default None. If a new Tensor is produced, this is an optional name to use.

Example 1:

Tensorflow and NumPy packages are imported. a NumPy array is created by using the np.array() method. The NumPy array is converted to tensor by using tf.convert_to_tensor() method. a tensor object is returned. 

Python3




# import packages
import tensorflow as tf
import numpy as np
 
#create numpy_array
numpy_array = np.array([[1,2],[3,4]])
 
# convert it to tensorflow
tensor1 = tf.convert_to_tensor(numpy_array)
print(tensor1)


 

 

Output:

 

tf.Tensor(
[[1 2]
 [3 4]], shape=(2, 2), dtype=int64)

 

Special Case:

 

If we want our tensor to be of a specific dtype we should specify the dtype bypassing the datatype. in the below example float is specified as the dtype.

 

Python3




# import packages
import tensorflow as tf
import numpy as np
 
# create numpy_array
numpy_array = np.array([[1, 2], [3, 4]])
 
# convert it to tensorflow
tensor1 = tf.convert_to_tensor(numpy_array, dtype=float, name='tensor1')
tensor1


Output:

<tf.Tensor: shape=(2, 2), dtype=float32, numpy=
array([[1., 2.],
       [3., 4.]], dtype=float32)>

Example 2:

We can also use the tf.Variable() method to convert a NumPy array to a Tensor. tf.Variable() function also has parameters dtype and name. They’re optional and we can specify them when needed.

Python3




# import packages
import tensorflow as tf
import numpy as np
 
# create numpy_array
numpy_array = np.array([[1, 2], [3, 4]])
 
# convert it to tensorflow
tensor1 = tf.Variable(numpy_array, dtype=float, name='tensor1')
tensor1


Output:

<tf.Variable 'tensor1:0' shape=(2, 2) dtype=float32, numpy=
array([[1., 2.],
       [3., 4.]], dtype=float32)>
RELATED ARTICLES

Most Popular

Dominic
32352 POSTS0 COMMENTS
Milvus
87 POSTS0 COMMENTS
Nango Kala
6720 POSTS0 COMMENTS
Nicole Veronica
11885 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11941 POSTS0 COMMENTS
Shaida Kate Naidoo
6840 POSTS0 COMMENTS
Ted Musemwa
7105 POSTS0 COMMENTS
Thapelo Manthata
6796 POSTS0 COMMENTS
Umr Jansen
6795 POSTS0 COMMENTS