Given a tree of N nodes, the task is to find the node having maximum depth starting from the root node, taking the root node at zero depth. If there are more than 1 maximum depth node, then find the one having the smallest value.
Examples:
Input:
1
/ \
2 3
/ \
4 5
Output: 4
Explanation:
For this tree:
Height of Node 1 - 0,
Height of Node 2 - 1,
Height of Node 3 - 1,
Height of Node 4 - 2,
Height of Node 5 - 2.
Hence, the nodes whose height is
maximum are 4 and 5, out of which
4 is minimum valued.
Input:
1
/
2
/
3
Output: 3
Explanation:
For this tree:
Height of Node 1 - 0,
Height of Node 2 - 1,
Height of Node 3 - 2
Hence, the node whose height
is maximum is 3.
Approach:
- The idea is to use Depth First Search(DFS) on the tree and for every node, check the height of every node as we move down the tree.
- Check if it is the maximum so far or not and if it has a height equal to the maximum value, then is it the minimum valued node or not.
- If yes then update the maximum height so far and the node value accordingly.
Below is the implementation of the above approach:
C++
// C++ implementation of for// the above problem#include <bits/stdc++.h>using namespace std;#define MAX 100000vector<int> graph[MAX + 1];// To store the height of each nodeint maxHeight, minNode;// Function to perform dfsvoid dfs(int node, int parent, int h){ // Store the height of node int height = h; if (height > maxHeight) { maxHeight = height; minNode = node; } else if (height == maxHeight && minNode > node) minNode = node; for (int to : graph[node]) { if (to == parent) continue; dfs(to, node, h + 1); }}// Driver codeint main(){ // Number of nodes int N = 5; // Edges of the tree graph[1].push_back(2); graph[1].push_back(3); graph[2].push_back(4); graph[2].push_back(5); maxHeight = 0; minNode = 1; dfs(1, 1, 0); cout << minNode << "\n"; return 0;} |
Java
// Java implementation of for// the above problemimport java.util.*;class GFG{static final int MAX = 100000;@SuppressWarnings("unchecked")static Vector<Integer>[] graph = new Vector[MAX + 1];// To store the height of each nodestatic int maxHeight, minNode;// Function to perform dfsstatic void dfs(int node, int parent, int h){ // Store the height of node int height = h; if (height > maxHeight) { maxHeight = height; minNode = node; } else if (height == maxHeight && minNode > node) minNode = node; for(int to : graph[node]) { if (to == parent) continue; dfs(to, node, h + 1); }}// Driver codepublic static void main(String[] args){ // Number of nodes int N = 5; for(int i = 0; i < graph.length; i++) graph[i] = new Vector<Integer>(); // Edges of the tree graph[1].add(2); graph[1].add(3); graph[2].add(4); graph[2].add(5); maxHeight = 0; minNode = 1; dfs(1, 1, 0); System.out.print(minNode + "\n");}}// This code is contributed by sapnasingh4991 |
Python3
# Python3 implementation of for# the above problemMAX = 100000 graph = [[] for i in range(MAX + 1)] # To store the height of each nodemaxHeight = 0minNode = 0 # Function to perform dfsdef dfs(node, parent, h): global minNode, maxHeight # Store the height of node height = h if (height > maxHeight): maxHeight = height minNode = node elif (height == maxHeight and minNode > node): minNode = node for to in graph[node]: if to == parent: continue dfs(to, node, h + 1) # Driver codeif __name__=="__main__": # Number of nodes N = 5 # Edges of the tree graph[1].append(2) graph[1].append(3) graph[2].append(4) graph[2].append(5) maxHeight = 0 minNode = 1 dfs(1, 1, 0) print(minNode)# This code is contributed by rutvik_56 |
C#
// C# implementation of for// the above problemusing System;using System.Collections.Generic; public class GFG{ static readonly int MAX = 100000;static List<int>[] graph = new List<int>[MAX + 1]; // To store the height of each nodestatic int maxHeight, minNode; // Function to perform dfsstatic void dfs(int node, int parent, int h){ // Store the height of node int height = h; if (height > maxHeight) { maxHeight = height; minNode = node; } else if (height == maxHeight && minNode > node) minNode = node; foreach(int to in graph[node]) { if (to == parent) continue; dfs(to, node, h + 1); }} // Driver codepublic static void Main(String[] args){ for(int i = 0; i < graph.Length; i++) graph[i] = new List<int>(); // Edges of the tree graph[1].Add(2); graph[1].Add(3); graph[2].Add(4); graph[2].Add(5); maxHeight = 0; minNode = 1; dfs(1, 1, 0); Console.Write(minNode + "\n");}} // This code is contributed by shikhasingrajput |
Javascript
<script> // Javascript implementation of for the above problem let MAX = 100000; let graph = new Array(MAX + 1); // To store the height of each node let maxHeight, minNode; // Function to perform dfs function dfs(node, parent, h) { // Store the height of node let height = h; if (height > maxHeight) { maxHeight = height; minNode = node; } else if (height == maxHeight && minNode > node) minNode = node; for(let to = 0; to < graph[node].length; to++) { if (graph[node][to] == parent) continue; dfs(graph[node][to], node, h + 1); } } for(let i = 0; i < graph.length; i++) graph[i] = []; // Edges of the tree graph[1].push(2); graph[1].push(3); graph[2].push(4); graph[2].push(5); maxHeight = 0; minNode = 1; dfs(1, 1, 0); document.write(minNode + "</br>");// This code is contributed by decode2207.</script> |
4
Time Complexity: O(N), Where N is the total number of nodes
Auxiliary Space: O(MAX)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!
