Sunday, October 5, 2025
HomeData Modelling & AIGill’s 4th Order Method to solve Differential Equations

Gill’s 4th Order Method to solve Differential Equations

Given the following inputs: 

  • An ordinary differential equation that defines the value of dy/dx in the form x and y.
    \LARGE \frac{dy}{dx} = f(x, y)
  • Initial value of y, i.e., y(0).
    \LARGE y(0)= y_o

The task is to find the value of the unknown function y at a given point x, i.e. y(x).
Examples: 

Input: x0 = 0, y = 3.0, x = 5.0, h = 0.2 
Output: y(x) = 3.410426
Input: x0 = 0, y = 1, x = 3, h = 0.3 
Output: y(x) = 1.669395  

Approach: 
Gill’s method is used to find an approximate value of y for a given x. Below is the formula used to compute the next value yn+1 from the previous value yn
Therefore: 

yn+1 = value of y at (x = n + 1)
yn = value of y at (x = n)
where
  0 ? n ? (x - x0)/h
  h is step height
  xn+1 = x0 + h

The essential formula to compute the value of y(n+1):
\LARGE K_{1} = h*f(x_{n}, y_{n})
\LARGE K_{2} = h*f(x_n + \frac{1}{2}h, y_n + \frac{1}{2}k_1)
\LARGE K_{3} = h*f[x_n + \frac{1}{2}h, y_n + \frac{1}{2}(-1 + \sqrt{2})k_1 + (1 - \frac{1}{2}\sqrt{2})k_2]
\LARGE K_{4} = h*f[x_n + h, y_n - \frac{1}{2}\sqrt{2}k_2 + (1 + \frac{1}{2}\sqrt{2})k_3]
\LARGE y_{n+1} = y_{n} + \frac{1}/{6}[K_1 + (2 - \sqrt{2})K_{2} + (2 + \sqrt{2})K_3 + K_4 ] + Error Terms
The formula basically computes the next value yn+1 using current yn
 

  • K1 is the increment based on the slope at the beginning of the interval, using y.
  • K2 is the increment based on the slope, using 
    \LARGE (y + \frac{1}{2}(K_1*h))
  • K3 is the increment based on the slope, using 
    \LARGE (y + \frac{1}{2}(-1 + \sqrt{2})K_1 + (1 - \frac{1}{2}\sqrt{2})K_2)
  • K4 is the increment based on the slope, using 
    (y - \frac{1}{2}\sqrt{2}K_2 + (1 + \frac{1}{2}\sqrt{2})K_3)

The method is a fourth-order method, meaning that the local truncation error is of the order of O(h5).
Below is the implementation of the above approach: 
 

C++




// C++ program to implement Gill's method
 
#include <bits/stdc++.h>
using namespace std;
 
// A sample differential equation
// "dy/dx = (x - y)/2"
float dydx(float x, float y)
{
    return (x - y) / 2;
}
 
// Finds value of y for a given x
// using step size h and initial
// value y0 at x0
float Gill(float x0, float y0,
        float x, float h)
{
    // Count number of iterations
    // using step size or height h
    int n = (int)((x - x0) / h);
 
    // Value of K_i
    float k1, k2, k3, k4;
 
    // Initial value of y(0)
    float y = y0;
 
    // Iterate for number of iteration
    for (int i = 1; i <= n; i++) {
 
        // Apply Gill's Formulas to
        // find next value of y
 
        // Value of K1
        k1 = h * dydx(x0, y);
 
        // Value of K2
        k2 = h * dydx(x0 + 0.5 * h,
                    y + 0.5 * k1);
 
        // Value of K3
        k3 = h * dydx(x0 + 0.5 * h,
                    y + 0.5 * (-1 + sqrt(2)) * k1
                        + k2 * (1 - 0.5 * sqrt(2)));
 
        // Value of K4
        k4 = h * dydx(x0 + h,
                    y - (0.5 * sqrt(2)) * k2
                        + k3 * (1 + 0.5 * sqrt(2)));
 
        // Find the next value of y(n+1)
        // using y(n) and values of K in
        // the above steps
        y = y + (1.0 / 6) * (k1 + (2 - sqrt(2)) * k2
                            + (2 + sqrt(2)) * k3 + k4);
 
        // Update next value of x
        x0 = x0 + h;
    }
 
    // Return the final value of dy/dx
    return y;
}
 
// Driver Code
int main()
{
    float x0 = 0, y = 3.0,
        x = 5.0, h = 0.2;
 
    printf("y(x) = %.6f",
        Gill(x0, y, x, h));
    return 0;
}


Java




// Java program to implement Gill's method
class GFG{
 
// A sample differential equation
// "dy/dx = (x - y)/2"
static double dydx(double x, double y)
{
    return (x - y) / 2;
}
 
// Finds value of y for a given x
// using step size h and initial
// value y0 at x0
static double Gill(double x0, double y0,
                   double x, double h)
{
     
    // Count number of iterations
    // using step size or height h
    int n = (int)((x - x0) / h);
 
    // Value of K_i
    double k1, k2, k3, k4;
 
    // Initial value of y(0)
    double y = y0;
 
    // Iterate for number of iteration
    for(int i = 1; i <= n; i++)
    {
         
       // Apply Gill's Formulas to
       // find next value of y
        
       // Value of K1
       k1 = h * dydx(x0, y);
        
       // Value of K2
       k2 = h * dydx(x0 + 0.5 * h,
                      y + 0.5 * k1);
        
       // Value of K3
       k3 = h * dydx(x0 + 0.5 * h,
                      y + 0.5 * (-1 + Math.sqrt(2)) *
                     k1 + k2 * (1 - 0.5 * Math.sqrt(2)));
        
       // Value of K4
       k4 = h * dydx(x0 + h,
                      y - (0.5 * Math.sqrt(2)) *
                     k2 + k3 * (1 + 0.5 * Math.sqrt(2)));
        
       // Find the next value of y(n+1)
       // using y(n) and values of K in
       // the above steps
       y = y + (1.0 / 6) * (k1 + (2 - Math.sqrt(2)) *
                            k2 + (2 + Math.sqrt(2)) *
                            k3 + k4);
        
       // Update next value of x
       x0 = x0 + h;
    }
 
    // Return the final value of dy/dx
    return y;
}
 
// Driver Code
public static void main(String[] args)
{
    double x0 = 0, y = 3.0,
            x = 5.0, h = 0.2;
 
    System.out.printf("y(x) = %.6f", Gill(x0, y, x, h));
}
}
 
// This code is contributed by Amit Katiyar


Python3




# Python3 program to implement Gill's method
from math import sqrt
 
# A sample differential equation
# "dy/dx = (x - y)/2"
def dydx(x, y):
    return (x - y) / 2
 
# Finds value of y for a given x
# using step size h and initial
# value y0 at x0
def Gill(x0, y0, x, h):
     
    # Count number of iterations
    # using step size or height h
    n = ((x - x0) / h)
 
    # Initial value of y(0)
    y = y0
 
    # Iterate for number of iteration
    for i in range(1, int(n + 1), 1):
         
        # Apply Gill's Formulas to
        # find next value of y
 
        # Value of K1
        k1 = h * dydx(x0, y)
 
        # Value of K2
        k2 = h * dydx(x0 + 0.5 * h,
                       y + 0.5 * k1)
 
        # Value of K3
        k3 = h * dydx(x0 + 0.5 * h,
                       y + 0.5 * (-1 + sqrt(2)) *
                      k1 + k2 * (1 - 0.5 * sqrt(2)))
 
        # Value of K4
        k4 = h * dydx(x0 + h, y - (0.5 * sqrt(2)) *
                    k2 + k3 * (1 + 0.5 * sqrt(2)))
 
        # Find the next value of y(n+1)
        # using y(n) and values of K in
        # the above steps
        y = y + (1 / 6) * (k1 + (2 - sqrt(2)) *
                           k2 + (2 + sqrt(2)) *
                           k3 + k4)
 
        # Update next value of x
        x0 = x0 + h
 
    # Return the final value of dy/dx
    return y
 
# Driver Code
if __name__ == '__main__':
     
    x0 = 0
    y = 3.0
    x = 5.0
    h = 0.2
 
    print("y(x) =", round(Gill(x0, y, x, h), 6))
 
# This code is contributed by Surendra_Gangwar


C#




// C# program to implement Gill's method
using System;
 
class GFG{
  
// A sample differential equation
// "dy/dx = (x - y)/2"
static double dydx(double x, double y)
{
    return (x - y) / 2;
}
  
// Finds value of y for a given x
// using step size h and initial
// value y0 at x0
static double Gill(double x0, double y0,
                   double x, double h)
{
      
    // Count number of iterations
    // using step size or height h
    int n = (int)((x - x0) / h);
  
    // Value of K_i
    double k1, k2, k3, k4;
  
    // Initial value of y(0)
    double y = y0;
  
    // Iterate for number of iteration
    for(int i = 1; i <= n; i++)
    {
          
       // Apply Gill's Formulas to
       // find next value of y
         
       // Value of K1
       k1 = h * dydx(x0, y);
         
       // Value of K2
       k2 = h * dydx(x0 + 0.5 * h,
                      y + 0.5 * k1);
         
       // Value of K3
       k3 = h * dydx(x0 + 0.5 * h,
                      y + 0.5 * (-1 + Math.Sqrt(2)) *
                     k1 + k2 * (1 - 0.5 * Math.Sqrt(2)));
         
       // Value of K4
       k4 = h * dydx(x0 + h,
                      y - (0.5 * Math.Sqrt(2)) *
                     k2 + k3 * (1 + 0.5 * Math.Sqrt(2)));
         
       // Find the next value of y(n+1)
       // using y(n) and values of K in
       // the above steps
       y = y + (1.0 / 6) * (k1 + (2 - Math.Sqrt(2)) *
                            k2 + (2 + Math.Sqrt(2)) *
                            k3 + k4);
         
       // Update next value of x
       x0 = x0 + h;
    }
  
    // Return the final value of dy/dx
    return y;
}
  
// Driver Code
public static void Main(String[] args)
{
    double x0 = 0, y = 3.0,
            x = 5.0, h = 0.2;
  
    Console.Write("y(x) = {0:F6}", Gill(x0, y, x, h));
}
}
 
// This code is contributed by Amit Katiyar


Javascript




<script>
 
// Javascript program to implement Gill's method
 
// A sample differential equation
// "dy/dx = (x - y)/2"
function dydx(x, y)
{
    return (x - y) / 2;
}
   
// Finds value of y for a given x
// using step size h and initial
// value y0 at x0
function Gill(x0, y0, x, h)
{
       
    // Count number of iterations
    // using step size or height h
    let n = ((x - x0) / h);
   
    // Value of K_i
    let k1, k2, k3, k4;
   
    // Initial value of y(0)
    let y = y0;
   
    // Iterate for number of iteration
    for(let i = 1; i <= n; i++)
    {
           
       // Apply Gill's Formulas to
       // find next value of y
          
       // Value of K1
       k1 = h * dydx(x0, y);
          
       // Value of K2
       k2 = h * dydx(x0 + 0.5 * h,
                      y + 0.5 * k1);
          
       // Value of K3
       k3 = h * dydx(x0 + 0.5 * h,
                      y + 0.5 * (-1 + Math.sqrt(2)) *
                     k1 + k2 * (1 - 0.5 * Math.sqrt(2)));
          
       // Value of K4
       k4 = h * dydx(x0 + h,
                      y - (0.5 * Math.sqrt(2)) *
                     k2 + k3 * (1 + 0.5 * Math.sqrt(2)));
          
       // Find the next value of y(n+1)
       // using y(n) and values of K in
       // the above steps
       y = y + (1.0 / 6) * (k1 + (2 - Math.sqrt(2)) *
                            k2 + (2 + Math.sqrt(2)) *
                            k3 + k4);
          
       // Update next value of x
       x0 = x0 + h;
    }
   
    // Return the final value of dy/dx
    return y;
}
 
// Driver Code
     
    let x0 = 0, y = 3.0,
            x = 5.0, h = 0.2;
   
    document.write("y(x) = ", Gill(x0, y, x, h).toFixed(6));
         
</script>


Output: 

y(x) = 3.410426

 

Time Complexity: O(n3/2)

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Dominic
32337 POSTS0 COMMENTS
Milvus
86 POSTS0 COMMENTS
Nango Kala
6706 POSTS0 COMMENTS
Nicole Veronica
11871 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11936 POSTS0 COMMENTS
Shaida Kate Naidoo
6823 POSTS0 COMMENTS
Ted Musemwa
7089 POSTS0 COMMENTS
Thapelo Manthata
6779 POSTS0 COMMENTS
Umr Jansen
6779 POSTS0 COMMENTS