Given an array arr[] consisting of N ranges of the form [L, R], the task is to determine the size of the smallest set that contains at least 2 integers within each interval.
Examples:
Input: arr[] = { {1, 3}, {2, 5}, {1, 4} }
Output: 2
Explanation: Interval [1, 3] contains the numbers 1, 2, 3.
Interval [2, 5] contains the numbers 2, 3, 4, 5.
Interval [1, 4] contains the numbers 1, 2, 3, 4.
Selecting set {2, 3} would be the smallest set covering all intervals. ÂInput: arr[] = { {3, 6}, {2, 4}, {0, 2}, {4, 7} }
Output: 4
Explanation: Possible Sets are
- [0, 2], [4, 5] = 5
- [1, 2], [4, 5] = 4
- [0, 2], [4, 6] = 6
- [1, 2], [4, 6] = 5
Optimum answer is 4 from 2nd set.Â
Approach: To solve the problem follow the below idea:
- Sort the array according to their endpoint in ascending order, AND if two intervals have the same end, sort them according to their start point in descending order.
- If there is no number in this interval being chosen before, we pick up the 2 biggest number in this interval (the biggest number have the most possibility to be used by the next interval).
- If there is one number in this interval being chosen before, we pick up the biggest number in this interval.
- If there are already two numbers in this interval being chosen before, we can skip this interval since the requirement has been fulfilled.
Below are the steps for the above approach:
- Sort the intervals vector.
- Initialize a variable say n to store the size of the input intervals vector.
- Initialize a vector res with the two rightmost points of the intervals.
- Iterate the sorted interval vector, for each interval, the start and end points are stored in the start and end variables.
- Check if the start point of the current interval is greater than the rightmost point of the res vector, that means there is no common integer between the current interval and the previous interval, hence add the two rightmost points of the current interval to the res vector.
- Check if the start point of the current interval is greater than the second last element of the res vector, that means there is only one common integer between the current interval and the previous interval, hence update the last element of the res vector with the endpoint of the current interval.
- Return the size of the res vector.
Below is the implementation of the above approach:
C++
// C++ code to implement the approach Â
#include <bits/stdc++.h> using namespace std; Â
// Sort with respect to end point bool compare(vector< int >& a, vector< int >& b) {     if (a[1] == b[1])         return a[0] < b[0];     else         return a[1] < b[1]; } Â
int intersectionSizeTwo(vector<vector< int > >& intervals) { Â Â Â Â int n = intervals.size(); Â
    // Sort the array     sort(intervals.begin(), intervals.end(), compare);     vector< int > res; Â
    // Known two rightmost point     // in the set/res     res.push_back(intervals[0][1] - 1);     res.push_back(intervals[0][1]); Â
    for ( int i = 1; i < n; i++) { Â
        int start = intervals[i][0];         int end = intervals[i][1]; Â
        // Means there is no common between         // curr interval and intervals         // before this         if (start > res.back()) {             res.push_back(end - 1);             res.push_back(end);         } Â
        // Atleast 1 value from current         // interval matches with previous         // sets just add 1 max value         else if (start > res[res.size() - 2]) {             res.push_back(end);         }     }     return res.size(); } Â
// Driver Code int main() { Â
    // ranges     vector<vector< int > > range         = { { 3, 6 }, { 2, 4 }, { 0, 2 }, { 4, 7 } }; Â
    // Function Call     cout << intersectionSizeTwo(range) << endl;     return 0; } |
Java
/*package whatever //do not write package name here */ import java.util.*; Â
class GFG { Â
    // Sort with respect to end point     public static int compare(List<Integer> a,                               List<Integer> b)     {         if (a.get( 1 ).equals(b.get( 1 ))) {             return a.get( 0 ).compareTo(b.get( 0 ));         }         else {             return a.get( 1 ).compareTo(b.get( 1 ));         }     } Â
    public static int     intersectionSizeTwo(List<List<Integer> > intervals)     {         int n = intervals.size(); Â
        // Sort the array         Collections.sort(intervals, GFG::compare);         List<Integer> res = new ArrayList<>(); Â
        // Known two rightmost point         // in the set/res         res.add(intervals.get( 0 ).get( 1 ) - 1 );         res.add(intervals.get( 0 ).get( 1 )); Â
        for ( int i = 1 ; i < n; i++) { Â
            int start = intervals.get(i).get( 0 );             int end = intervals.get(i).get( 1 ); Â
            // Means there is no common between             // curr interval and intervals             // before this             if (start > res.get(res.size() - 1 )) {                 res.add(end - 1 );                 res.add(end);             } Â
            // Atleast 1 value from current             // interval matches with previous             // sets just add 1 max value             else if (start > res.get(res.size() - 2 )) {                 res.add(end);             }         }         return res.size();     } Â
    // Driver Code     public static void main(String[] args)     {         // ranges         List<List<Integer> > range = Arrays.asList(             Arrays.asList( 3 , 6 ), Arrays.asList( 2 , 4 ),             Arrays.asList( 0 , 2 ), Arrays.asList( 4 , 7 )); Â
        // Function Call         System.out.println(intersectionSizeTwo(range));     } } |
Python3
#python3 code for the above approach def intersectionSizeTwo(intervals): Â Â Â Â n = len (intervals) Â
    # Custom comparison function to sort intervals based on end points and then start points     def compare(a, b):         if a[ 1 ] = = b[ 1 ]:             return a[ 0 ] < b[ 0 ] # If end points are equal, sort by start points         else :             return a[ 1 ] < b[ 1 ] # Otherwise, sort by end points Â
    # Sort intervals based on end points and start points     intervals.sort(key = lambda x: (x[ 1 ], x[ 0 ]))     res = [intervals[ 0 ][ 1 ] - 1 , intervals[ 0 ][ 1 ]] # Initialize result list with two rightmost points Â
    # Iterate through the sorted intervals     for i in range ( 1 , n):         start = intervals[i][ 0 ]         end = intervals[i][ 1 ] Â
        if start > res[ - 1 ]: # If the current interval starts after the last rightmost point             res.append(end - 1 )             res.append(end)         elif start > res[ - 2 ]: # If the current interval starts after the second-to-last rightmost point             res.append(end) Â
    return len (res) # Return the length of the result list, which represents the intersection size Â
# Driver Code def main():     # List of intervals/ranges     ranges = [[ 3 , 6 ], [ 2 , 4 ], [ 0 , 2 ], [ 4 , 7 ]] Â
    # Function Call     print (intersectionSizeTwo(ranges)) Â
main() |
C#
using System; using System.Collections.Generic; using System.Linq; Â
class GFG {     // Sort with respect to end point     public static int Compare(List< int > a, List< int > b)     {         if (a[1] == b[1])         {             return a[0].CompareTo(b[0]);         }         else         {             return a[1].CompareTo(b[1]);         }     } Â
    public static int IntersectionSizeTwo(List<List< int >> intervals)     {         int n = intervals.Count; Â
        // Sort the array         intervals.Sort(Compare);         List< int > res = new List< int >(); Â
        // Known two rightmost point         // in the set/res         res.Add(intervals[0][1] - 1);         res.Add(intervals[0][1]); Â
        for ( int i = 1; i < n; i++)         { Â
            int start = intervals[i][0];             int end = intervals[i][1]; Â
            // Means there is no common between             // curr interval and intervals             // before this             if (start > res[res.Count - 1])             {                 res.Add(end - 1);                 res.Add(end);             } Â
            // Atleast 1 value from current             // interval matches with previous             // sets just add 1 max value             else if (start > res[res.Count - 2])             {                 res.Add(end);             }         }         return res.Count;     } Â
    // Driver Code     public static void Main( string [] args)     {         // ranges         List<List< int >> range = new List<List< int >>         {             new List< int > { 3, 6 },             new List< int > { 2, 4 },             new List< int > { 0, 2 },             new List< int > { 4, 7 }         }; Â
        // Function Call         Console.WriteLine(IntersectionSizeTwo(range));     } } |
Javascript
// Sort with respect to end point function compare(a, b) { Â Â Â Â if (a[1] === b[1]) { Â Â Â Â Â Â Â Â return a[0] - b[0]; Â Â Â Â } else { Â Â Â Â Â Â Â Â return a[1] - b[1]; Â Â Â Â } } Â
function intersectionSizeTwo(intervals) {     let n = intervals.length;               // Sort the array     intervals.sort(compare);     let res = [];          // Known two rightmost point     // in the set/res     res.push(intervals[0][1] - 1);     res.push(intervals[0][1]);     for (let i = 1; i < n; i++) {         let start = intervals[i][0];         let end = intervals[i][1];                           // Means there is no common between         // curr interval and intervals         // before this         if (start > res[res.length - 1]) {             res.push(end - 1);             res.push(end);         }         // Atleast 1 value from current         // interval matches with previous         // sets just add 1 max value         else if (start > res[res.length - 2]) {             res.push(end);         }     }          // Returning length     return res.length; } Â
Â
// Test case let range = [ Â Â Â Â [3, 6], [2, 4], Â Â Â Â [0, 2], [4, 7] ]; Â
console.log(intersectionSizeTwo(range)); |
4
Time Complexity: O(N * log(N))
Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!