Given a matrix A[][] of N * M, the task is to find the maximum sum from the top row to the bottom row after selecting one element from each row with no adjacent diagonal element.
Examples:
Input: A = { {1, 2, 3, 4}, {8, 7, 6, 5}, {10, 11, 12, 13} }
Output: 25
Explanation:
Selected elements to give maximum sum –
Row 0 = 4
Row 1 = 8
Row 2 = 13
Sum = 25Input: A = { {1, 6}, {5, 3}, {11, 7} }
Output: 17
Explanation:
Selected elements to give maximum sum –
Row 0 = 1
Row 1 = 5
Row 2 = 11
Explanation: For Selecting any element if we have selected A[i][j], then elements A[i+1][j+1] and A[i+1][j-1] cannot be selected.
In the Given example Select the maximum element from the top-row where 4 is maximum in this case, then element A[1][2] cannot be selected which is 6, select the element 8 which maximum from the available options. Similarly, element 11 cannot be selected from the 3rd row. Select the element 13 to get the maximum sum which is 25.
Naive Approach: Generate all the combinations of N elements after choosing 1 element from every row and select the combination which produces maximum sum.
Efficient Approach: The idea is to use the concept of Dynamic programming in bottom up manner. Begin with the bottom most row of the given matrix and repeat the below process until we reach the top most row.
- Create an auxiliary array of the bottom most row elements with it corresponding indexes.
- Sort the auxiliary array.
- Iterate over the auxiliary array and for each element find maximum element from the row above to be added to the current element to produce maximum sum such that for every A[i][j] the selected element is not A[i-1][j+1] or A[i-1][j-1].
- Repeat this until reach to the topmost row of the given matrix array.
- Find the maximum element from the top row to get the maximum sum
Below is the implementation of the above approach.
C++
// C++ implementation to find // maximum sum from top to bottom // row with no adjacent diagonal elements #include <bits/stdc++.h> using namespace std; // Function to find the maximum // path sum from top to bottom row int maxSum(vector<vector< int > >& V, int n, int m){ int ans = 0; for ( int i = n - 2; i >= 0; --i) { // Create an auxiliary array of next row // with the element and it's position vector<pair< int , int > > aux; for ( int j = 0; j < m; ++j) { aux.push_back({ V[i + 1][j], j }); } // Sort the auxiliary array sort(aux.begin(), aux.end()); reverse(aux.begin(), aux.end()); // Find maximum from row above to // be added to the current element for ( int j = 0; j < m; ++j) { // Find the maximum element from // the next row that can be added // to current row element for ( int k = 0; k < m; ++k) { if (aux[k].second - j == 0 || abs (aux[k].second - j) > 1) { V[i][j] += aux[k].first; break ; } } } } // Find the maximum sum for ( int i = 0; i < m; ++i) { ans = max(ans, V[0][i]); } return ans; } // Driver Code int main() { vector<vector< int > > V{{ 1, 2, 3, 4 }, { 8, 7, 6, 5 }, { 10, 11, 12, 13 }}; int n = V.size(); int m = V[0].size(); // Function to find maximum path cout << maxSum(V, n, m); return 0; } |
Java
// Java implementation to find maximum // sum from top to bottom row with no // adjacent diagonal elements import java.util.*; import java.lang.*; import java.io.*; class GFG{ // Function to find the maximum // path sum from top to bottom row static int maxSum( int [][] V, int n, int m) { int ans = 0 ; for ( int i = n - 2 ; i >= 0 ; --i) { // Create an auxiliary array of next row // with the element and it's position ArrayList< int []> aux = new ArrayList<>(); for ( int j = 0 ; j < m; ++j) { aux.add( new int []{V[i + 1 ][j], j}); } // Sort the auxiliary array Collections.sort(aux, (a, b) -> b[ 0 ] - a[ 0 ]); // Find maximum from row above to // be added to the current element for ( int j = 0 ; j < m; ++j) { // Find the maximum element from // the next row that can be added // to current row element for ( int k = 0 ; k < m; ++k) { if (aux.get(k)[ 1 ] - j == 0 || Math.abs(aux.get(k)[ 1 ] - j) > 1 ) { V[i][j] += aux.get(k)[ 0 ]; break ; } } } } // Find the maximum sum for ( int i = 0 ; i < m; ++i) { ans = Math.max(ans, V[ 0 ][i]); } return ans; } // Driver code public static void main(String[] args) { int [][] V = { { 1 , 2 , 3 , 4 }, { 8 , 7 , 6 , 5 }, { 10 , 11 , 12 , 13 } }; int n = V.length; int m = V[ 0 ].length; // Function to find maximum path System.out.println(maxSum(V, n, m)); } } // This code is contributed by offbeat |
Python3
# Python3 implementation to find # maximum sum from top to bottom # row with no adjacent diagonal elements # Function to find the maximum # path sum from top to bottom row def maxSum(V, n, m): ans = 0 for i in range (n - 2 , - 1 , - 1 ): # Create an auxiliary array of next row # with the element and it's position aux = [] for j in range (m): aux.append([V[i + 1 ][j], j]) # Sort the auxiliary array aux = sorted (aux) aux = aux[:: - 1 ] # Find maximum from row above to # be added to the current element for j in range (m): # Find the maximum element from # the next row that can be added # to current row element for k in range (m): if (aux[k][ 1 ] - j = = 0 or abs (aux[k][ 1 ] - j) > 1 ): V[i][j] + = aux[k][ 0 ] break # Find the maximum sum for i in range (m): ans = max (ans, V[ 0 ][i]) return ans # Driver Code if __name__ = = '__main__' : V = [[ 1 , 2 , 3 , 4 ], [ 8 , 7 , 6 , 5 ], [ 10 , 11 , 12 , 13 ]] n = len (V) m = len (V[ 0 ]) # Function to find maximum path print (maxSum(V, n, m)) # This code is contributed by mohit kumar 29 |
C#
// C# implementation to find // maximum sum from top to bottom // row with no adjacent diagonal elements using System; using System.Collections.Generic; class GFG { // Function to find the maximum // path sum from top to bottom row static int maxSum( int [,] V, int n, int m){ int ans = 0; for ( int i = n - 2; i >= 0; --i) { // Create an auxiliary array of next row // with the element and it's position List<Tuple< int , int >> aux = new List<Tuple< int , int >>(); for ( int j = 0; j < m; ++j) { aux.Add( new Tuple< int , int >(V[i + 1, j], j)); } // Sort the auxiliary array aux.Sort(); aux.Reverse(); // Find maximum from row above to // be added to the current element for ( int j = 0; j < m; ++j) { // Find the maximum element from // the next row that can be added // to current row element for ( int k = 0; k < m; ++k) { if (aux[k].Item2 - j == 0 || Math.Abs(aux[k].Item2 - j) > 1) { V[i, j] += aux[k].Item1; break ; } } } } // Find the maximum sum for ( int i = 0; i < m; ++i) { ans = Math.Max(ans, V[0,i]); } return ans; } // Driver code static void Main() { int [,] V = {{ 1, 2, 3, 4 }, { 8, 7, 6, 5 }, { 10, 11, 12, 13 }}; int n = V.GetLength(0); int m = V.GetLength(1); // Function to find maximum path Console.WriteLine(maxSum(V, n, m)); } } // This code is contributed by divyesh072019. |
Javascript
<script> // Javascript implementation to find // maximum sum from top to bottom // row with no adjacent diagonal elements // Function to find the maximum // path sum from top to bottom row function maxSum(V, n, m){ let ans = 0; for (let i = n - 2; i >= 0; --i) { // Create an auxiliary array of next row // with the element and it's position let aux = new Array(); for (let j = 0; j < m; ++j) { aux.push([ V[i + 1][j], j ]); } // Sort the auxiliary array aux.sort((a, b) => a[0] - b[0]); aux.reverse(); // Find maximum from row above to // be added to the current element for (let j = 0; j < m; ++j) { // Find the maximum element from // the next row that can be added // to current row element for (let k = 0; k < m; ++k) { if (aux[k][1] - j == 0 || Math.abs(aux[k][1] - j) > 1) { V[i][j] += aux[k][0]; break ; } } } } // Find the maximum sum for (let i = 0; i < m; ++i) { ans = Math.max(ans, V[0][i]); } return ans; } // Driver Code let V = [[ 1, 2, 3, 4 ], [ 8, 7, 6, 5 ], [ 10, 11, 12, 13 ]]; let n = V.length; let m = V[0].length; // Function to find maximum path document.write(maxSum(V, n, m)); // This code is contributed by _saurabh_jaiswal </script> |
25
Time Complexity: O(n*m2)
Auxiliary Space: O(m)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!