Friday, October 10, 2025
HomeData Modelling & AIFind largest sum of digits in all divisors of n

Find largest sum of digits in all divisors of n

Given an integer number n, find the largest sum of digits in all divisors of n.

Examples : 

Input : n = 12 
Output : 6
Explanation:
The divisors are: 1 2 3 4 6 12.
6 is maximum sum among all divisors

Input : n = 68
Output : 14
Explanation: 
The divisors are: 1 2 4 68
68 consists of maximum sum of digit

Naive approach: 
The idea is simple, we find all divisors of a number one by one. For every divisor, we compute sum of digits. Finally, we return the largest sum of digits.

Below is the implementation of the above approach: 

CPP




// CPP program to find maximum
// sum of digits in all divisors
// of n numbers.
#include <bits/stdc++.h>
using namespace std;
  
// Function to get sum of digits
int getSum(int n)
{
    int sum = 0;
    while (n != 0) {
        sum = sum + n % 10;
        n = n / 10;
    }
    return sum;
}
  
// returns maximum sum
int largestDigitSumdivisior(int n)
{
    int res = 0;
    for (int i = 1; i <= n; i++)
  
        // if i is factor of n
        // then push the divisor
        // in the stack.
        if (n % i == 0)
            res = max(res, getSum(i));
  
    return res;
}
  
// Driver Code
int main()
{
    int n = 14;
    cout << largestDigitSumdivisior(n) << endl;
    return 0;
}


Java




// Java program to find maximum
// sum of digits in all divisors
// of n numbers.
import java.util.*;
import java.lang.*;
  
class GfG
{
      
    // Function to get 
    // sum of digits
    public static int getSum(int n)
    
        int sum = 0;
        while (n != 0)
        {
            sum = sum + n % 10;
            n = n/10;
        }
        return sum;
    }
  
    // returns maximum sum
    public static int largestDigitSumdivisior(int n)
    {
        int res = 0;
        for (int i = 1; i <= n; i++) 
  
            // if i is factor of n  
            // then push the divisor 
            // in the stack.
            if (n % i == 0
            res = Math.max(res, getSum(i));
  
        return res;
    }
      
    // Driver Code
    public static void main(String argc[]){
        int n = 14;
          
        System.out.println(largestDigitSumdivisior(n));
    }
      
}
// This code is contributed
// by Sagar Shukla


Python3




# Python3 code to find 
# maximum sum of digits 
# in all divisors of n numbers.
  
# Function to get sum of digits
def getSum( n ):
    sum = 0
    while n != 0:
        sum = sum + n % 10
        n = int( n / 10 )
    return sum
  
# returns maximum sum
def largestDigitSumdivisior( n ):
    res = 0
    for i in range(1, n + 1):
  
        # if i is factor of n 
        # then push the divisor
        # in the stack.
        if n % i == 0:
            res = max(res, getSum(i))
  
    return res
  
  
# Driver Code
n = 14
print(largestDigitSumdivisior(n) )
  
# This code is contributed
# by "Sharad_Bhardwaj".


C#




// C# program to find maximum 
// sum of digits in all 
// divisors of n numbers.
using System;
  
class GfG 
{
      
    // Function to get
    // sum of digits
    public static int getSum(int n)
    
        int sum = 0;
        while (n != 0)
        {
            sum = sum + n % 10;
            n = n / 10;
        }
        return sum;
    }
  
    // returns maximum sum
    public static int largestDigitSumdivisior(int n)
    {
        int res = 0;
        for (int i = 1; i <= n; i++) 
  
            // if i is factor of n 
            // then push the divisor
            // in the stack.
            if (n % i == 0) 
            res = Math.Max(res, getSum(i));
  
        return res;
    }
      
    // Driver Code
    public static void Main()
    {
        int n = 14;
          
        Console.WriteLine(largestDigitSumdivisior(n));
    }
      
}
  
// This code is contributed by vt_m


PHP




<?php
// PHP program to find maximum
// sum of digits in all
// divisors of n numbers.
  
// Function to get 
// sum of digits 
function getSum( $n)
    $sum = 0;
    while ($n != 0)
{
    $sum = $sum + $n % 10;
    $n = $n/10;
}
return $sum;
}
  
// returns maximum sum
function largestDigitSumdivisior( $n)
{
    $res = 0;
    for ($i = 1; $i <= $n; $i++) 
  
        // if i is factor of n then 
        // push the divisor in
        // the stack.
        if ($n % $i == 0) 
        $res = max($res, getSum($i));
  
    return $res;
}
  
    // Driver Code
    $n = 14;
    echo largestDigitSumdivisior($n);
  
// This code is contributed by anuj_67.
?>


Javascript




<script>
// Javascript program to find maximum
// sum of digits in all divisors
// of n numbers.
  
// Function to get sum of digits
function getSum(n)
{
let sum = 0;
while (n != 0)
{
    sum = sum + n % 10;
    n = Math.floor(n/10);
}
return sum;
}
  
// returns maximum sum
function largestDigitSumdivisior(n)
{
    let res = 0;
    for (let i = 1; i <= n; i++)
  
        // if i is factor of n
        // then push the divisor
        // in the stack.
        if (n % i == 0)
        res = Math.max(res, getSum(i));
  
    return res;
}
  
// Driver Code
  
    let n = 14;
    document.write(largestDigitSumdivisior(n)
        + "<br>");
  
// This code is contributed by Mayank Tyagi
  
</script>


Output

7

Time Complexity: O(n*log10 (n))
Auxiliary Space: O(1)

An efficient approach will be to find the divisors in O(sqrt n). We follow the same steps as above, just iterate till sqrt(n) and get i and n/i as their divisors whenever n%i==0.
Below is the implementation of the above approach:

CPP




// CPP program to find
// maximum sum of digits
// in all divisors of n 
// numbers.
#include <bits/stdc++.h>
using namespace std;
  
// Function to get
// sum of digits 
int getSum(int n)
int sum = 0;
while (n != 0)
{
    sum = sum + n % 10;
    n = n / 10;
}
return sum;
}
  
// returns maximum sum
int largestDigitSumdivisior(int n)
{
    int res = 0;
      
    // traverse till sqrt(n) 
    for (int i = 1; i <= sqrt(n); i++) 
  
        // if i is factor of
        // n then push the
        // divisor in the stack.
        if (n % i == 0)
        {
            // check for both the divisors
            res = max(res, getSum(i));
            res = max(res,getSum(n / i));
        }     
  
    return res;
}
  
// Driver Code
int main()
{
    int n = 14;
    cout << largestDigitSumdivisior(n) 
         << endl;
    return 0;
}


Java




// Java program to find maximum 
// sum of digits in all divisors
// of n numbers.
  
import java.io.*;
import java.math.*;
  
class GFG 
{
  
    // Function to get 
    // sum of digits 
    static int getSum(int n)
    {
        int sum = 0;
        while (n != 0)
        {
            sum = sum + n % 10;
            n = n / 10;
        }
        return sum;
    }
  
    // returns maximum sum
    static int largestDigitSumdivisior(int n)
    {
        int res = 0;
  
        // traverse till sqrt(n)
        for (int i = 1; i <= Math.sqrt(n); i++)
        {
  
            // if i is factor of
            // n then push the
            // divisor in the stack.
            if (n % i == 0
            {
                  
                // check for both the divisors
                res = Math.max(res, getSum(i));
                res = Math.max(res, getSum(n / i));
            }
  
        }
          
        return res;
    }
  
    // Driver Code
    public static void main(String args[])
    {
        int n = 14;
        System.out.println(largestDigitSumdivisior(n));
    }
}
  
// This code is contributed
// by Nikita Tiwari


Python3




# Python 3 program
# to find maximum
# sum of digits in 
# all divisors of
# n numbers
import math
  
# Function to get 
# sum of digits 
def getSum(n) :
    sm = 0
    while (n != 0) :
        sm = sm + n % 10
        n = n // 10
          
    return sm
      
      
# returns maximum sum
def largestDigitSumdivisior(n) :
    res = 0
      
    # traverse till sqrt(n) 
    for i in range(1, (int)(math.sqrt(n))+1) :
          
        # if i is factor of n then 
        # push the divisor in the
        # stack.
        if (n % i == 0) :
  
            # check for both the
            # divisors
            res = max(res, getSum(i))
            res = max(res, getSum(n // i))
              
    return res
  
# Driver Code
n = 14
print(largestDigitSumdivisior(n))
  
#This code is contributed 
# by Nikita Tiwari


C#




// C# program to find maximum sum
// of digits in all divisors of n 
// numbers.
using System;
  
class GFG 
{
  
    // Function to get 
    // sum of digits 
    static int getSum(int n)
    {
        int sum = 0;
          
        while (n != 0)
        {
            sum = sum + n % 10;
            n = n / 10;
        }
          
        return sum;
    }
  
    // returns maximum sum
    static int largestDigitSumdivisior(int n)
    {
        int res = 0;
  
        // traverse till sqrt(n)
        for (int i = 1; i <= Math.Sqrt(n); i++)
        {
  
            // if i is factor of n then push the
            // divisor in the stack.
            if (n % i == 0) 
            {
                  
                // check for both the divisors
                res = Math.Max(res, getSum(i));
                res = Math.Max(res, getSum(n / i));
            }
  
        }
          
        return res;
    }
  
    // Driver Code
    public static void Main()
    {
        int n = 14;
          
        Console.WriteLine(largestDigitSumdivisior(n));
    }
}
  
// This code is contributed by Vt_m


PHP




<?php
// PHP program to find maximum
// sum of digits in all
// divisors of n numbers
  
// Function to get
// sum of digits 
function getSum($n)
    $sum = 0;
while ($n != 0)
{
    $sum = $sum + $n % 10;
    $n = $n / 10;
}
return $sum;
}
  
// returns maximum sum
function largestDigitSumdivisior( $n)
{
    $res = 0;
      
    // traverse till sqrt(n) 
    for ($i = 1; $i <= sqrt($n); $i++) 
  
        // if i is factor of
        // n then push the
        // divisor in the stack.
        if ($n % $i == 0)
        {
            // check for both the divisors
            $res = max($res, getSum($i));
            $res = max($res, getSum($n / $i));
        
  
    return $res;
}
  
// Driver Code
$n = 14;
echo largestDigitSumdivisior($n);
  
// This code is contributed by anuj_67.
?>


Javascript




<script>
  
// JavaScript program to find
// maximum sum of digits
// in all divisors of n
// numbers.
  
// Function to get
// sum of digits
function getSum(n)
{
var sum = 0;
while (n != 0)
{
    sum = sum + n % 10;
    n = parseInt(n / 10);
}
return sum;
}
  
// returns maximum sum
function largestDigitSumdivisior(n)
{
    var res = 0;
      
    // traverse till sqrt(n)
    for (var i = 1; i <= Math.sqrt(n); i++)
  
        // if i is factor of
        // n then push the
        // divisor in the stack.
        if (n % i == 0)
        {
            // check for both the divisors
            res = Math.max(res, getSum(i));
            res = Math.max(res,getSum(n / i));
        }    
  
    return res;
}
  
// Driver Code
var n = 14;
document.write(largestDigitSumdivisior(n));
  
</script>


Output

7

Time Complexity: O(sqrt(n) log n)
Auxiliary Space: O(1) as it is using constant space for variables

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Dominic
32349 POSTS0 COMMENTS
Milvus
87 POSTS0 COMMENTS
Nango Kala
6715 POSTS0 COMMENTS
Nicole Veronica
11878 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11941 POSTS0 COMMENTS
Shaida Kate Naidoo
6837 POSTS0 COMMENTS
Ted Musemwa
7097 POSTS0 COMMENTS
Thapelo Manthata
6792 POSTS0 COMMENTS
Umr Jansen
6791 POSTS0 COMMENTS