Given an integer N, the task is to find the product of all the numbers from the range [1, N] that are co-prime to the given number N.
Examples:
Input: N = 5
Output: 24
Explanation:
Numbers which are co-prime with 5 are {1, 2, 3, 4}.
Therefore, the product is given by 1 * 2 * 3 * 4 = 24.Input: N = 6
Output: 5
Explanation:
Numbers which are co-prime to 6 are {1, 5}.
Therefore, the required product is equal to 1 * 5 = 5
Approach: The idea is to iterate over the range [1, N] and for every number, check if its GCD with N is equal to 1 or not. If found to be true for any number, then include that number in the resultant product.Â
Follow the steps below to solve the problem:
- Initialize the product as 1.
- Iterate over the range [1, N] and if GCD of i and N is 1, multiply product with i.
- After the above step, print the value of the product.
Below is the implementation of the above approach:
C++
// C++ program for the above approach Â
#include <iostream> using namespace std; Â
// Function to return gcd of a and b int gcd( int a, int b) {     // Base Case     if (a == 0)         return b; Â
    // Recursive GCD     return gcd(b % a, a); } Â
// Function to find the product of // all the numbers till N that are // relatively prime to N int findProduct(unsigned int N) {     // Stores the resultant product     unsigned int result = 1; Â
    // Iterate over [2, N]     for ( int i = 2; i < N; i++) { Â
        // If gcd is 1, then find the         // product with result         if (gcd(i, N) == 1) {             result *= i;         } Â
            }    // Return the final product         return result; } Â
// Driver Code int main() { Â Â Â Â int N = 5; Â
    cout << findProduct(N);     return 0; } |
Java
// Java program for the // above approach import java.util.*; class GFG{ Â
// Function to return // gcd of a and b static int gcd( int a, int b) {   // Base Case   if (a == 0 )     return b; Â
  // Recursive GCD   return gcd(b % a, a); } Â
// Function to find the // product of all the // numbers till N that are // relatively prime to N static int findProduct( int N) {   // Stores the resultant   // product   int result = 1 ; Â
  // Iterate over [2, N]   for ( int i = 2 ; i < N; i++)   {     // If gcd is 1, then     // find the product     // with result     if (gcd(i, N) == 1 )     {       result *= i;     }   }      // Return the final   // product   return result; } Â
// Driver Code public static void main(String[] args) { Â Â int N = 5 ; Â Â System.out.print(findProduct(N)); } } Â
// This code is contributed by Rajput-Ji |
Python3
# Python3 program for the # above approach Â
# Function to return # gcd of a and b def gcd(a, b):        # Base Case     if (a = = 0 ):         return b; Â
    # Recursive GCD     return gcd(b % a, a); Â
# Function to find the # product of all the # numbers till N that are # relatively prime to N def findProduct(N):        # Stores the resultant     # product     result = 1 ; Â
    # Iterate over [2, N]     for i in range ( 2 , N):                # If gcd is 1, then         # find the product         # with result         if (gcd(i, N) = = 1 ):             result * = i; Â
    # Return the final     # product     return result; Â
# Driver Code if __name__ = = '__main__' : Â Â Â Â Â Â Â N = 5 ; Â Â Â Â print (findProduct(N)); Â
# This code is contributed by 29AjayKumar |
C#
// C# program for the // above approach using System; Â
class GFG{ Â
// Function to return // gcd of a and b static int gcd( int a, int b) {      // Base Case   if (a == 0)     return b; Â
  // Recursive GCD   return gcd(b % a, a); } Â
// Function to find the // product of all the // numbers till N that are // relatively prime to N static int findProduct( int N) {      // Stores the resultant   // product   int result = 1; Â
  // Iterate over [2, N]   for ( int i = 2; i < N; i++)   {          // If gcd is 1, then     // find the product     // with result     if (gcd(i, N) == 1)     {       result *= i;     }   }      // Return the readonly   // product   return result; } Â
// Driver Code public static void Main(String[] args) { Â Â int N = 5; Â Â Â Â Â Console.Write(findProduct(N)); } } Â
// This code is contributed by Amit Katiyar |
Javascript
<script> Â
Â
// Javascript program for the above approach Â
// Function to return gcd of a and b function gcd(a, b) {     // Base Case     if (a == 0)         return b; Â
    // Recursive GCD     return gcd(b % a, a); } Â
// Function to find the product of // all the numbers till N that are // relatively prime to N function findProduct( N) {     // Stores the resultant product     var result = 1; Â
    // Iterate over [2, N]     for ( var i = 2; i < N; i++) { Â
        // If gcd is 1, then find the         // product with result         if (gcd(i, N) == 1) {             result *= i;         }             }    // Return the final product         return result; } Â
// Driver Code var N = 5; document.write(findProduct(N)) Â
</script> |
24
Time Complexity: O(N log N)
Auxiliary Space: O(1)
Approach#2: Using nested while
This approach calculates the product of all numbers up to N that are co-prime with N, using Euler’s totient function. It first factorizes N and then applies the formula for Euler’s totient function to compute the product.
Algorithm
1. Find the Euler totient function value of N, which gives the count of numbers that are co-prime to N.
2. Calculate the product of all integers up to N-1.
C++
#include <iostream> using namespace std; Â
int main() { Â
    cout << "GFG!" ;     return 0; } |
C++
#include <iostream> #include <cmath> Â
// Function to calculate the greatest common divisor (GCD) int gcd( int a, int b) { Â Â Â Â if (b == 0) { Â Â Â Â Â Â Â Â return a; Â Â Â Â } Â Â Â Â return gcd(b, a % b); } Â
// Function to calculate Euler's Totient Function int eulerTotient( int n) {     int phi = n; // Initialize phi with the value of n     int i = 2;     while (i * i <= n) {         if (n % i == 0) {             while (n % i == 0) {                 n /= i; // Reduce n by its prime factors             }             phi -= phi / i; // Update phi using Euler's Totient formula         }         i++;     }     if (n > 1) {         phi -= phi / n; // If there is one more prime factor remaining     }     return phi; } Â
// Function to calculate the product of co-prime numbers with N int coPrimeProduct( int N) {     int phi_N = eulerTotient(N); // Calculate Euler's Totient for N     int product = 1; // Initialize the product as 1     for ( int i = 1; i < N; i++) {         if (gcd(i, N) == 1) { // Check if i is co-prime with N using GCD             product *= i; // Multiply i to the product if it's co-prime         }     }     return product; } Â
int main() {     int N = 5;     int result = coPrimeProduct(N); // Calculate the co-prime product for N     std::cout << result << std::endl; // Print the result     return 0; } |
Python3
from math import gcd Â
def co_prime_product_3(N):     def euler_totient(n):         phi = n         i = 2         while i * i < = n:             if n % i = = 0 :                 while n % i = = 0 :                     n / / = i                 phi - = phi / / i             i + = 1         if n > 1 :             phi - = phi / / n         return phi          phi_N = euler_totient(N)     product = 1     for i in range ( 1 , N):         if gcd(i, N) = = 1 :             product * = i     return product Â
N = 5 print (co_prime_product_3(N)) |
24
Time Complexity: O(N log N)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!