Saturday, October 11, 2025
HomeData Modelling & AILargest cube that can be inscribed within a right circular cone

Largest cube that can be inscribed within a right circular cone

Given a right circular cone of radius r and perpendicular height h. We have to find the side length of the biggest cube that can be inscribed within it.
Examples
 

Input : h = 5, r = 6
Output : 3.14613

Input : h = 8, r = 12
Output : 5.43698

 

 

Approach
Let, side of the cube = a.
From the diagram, we can clearly understand using the properties of triangles: BC/AB = DE/AD.
Therefore, 
 

r/h = (a/?2)/(h-a)

or, a = h*r?2/(h+?2*r)

Below is the implementation of the above approach: 
 

C++




// C++ Program to find the biggest cube
// inscribed within a right circular cone
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the side of the cube
float cubeSide(float h, float r)
{
    // height and radius cannot be negative
    if (h < 0 && r < 0)
        return -1;
 
    // side of the cube
    float a = (h * r * sqrt(2)) / (h + sqrt(2) * r);
 
    return a;
}
 
// Driver code
int main()
{
    float h = 5, r = 6;
 
    cout << cubeSide(h, r) << endl;
 
    return 0;
}


Java




// Java Program to find the biggest cube
// which can be inscribed within a right circular cone
 
import java.io.*;
 
class GFG {
 
 
// Function to find the side of the cube
 
static float cube(float h, float r)
{
 
    // height and radius cannot be negative
    if (h < 0 && r < 0)
        return -1;
 
 // side of the cube
    float a = (h * r * (float)Math.sqrt(2)) / (h + (float)Math.sqrt(2) * r);
   
    return a;
}
 
// Driver code
   
    public static void main (String[] args) {
          float h = 5, r = 6;
    System.out.println( cube(h, r));
    }
}
 
// this article is contributed by Ishwar Gupta


Python 3




# Python3 Program to find the biggest cube
# inscribed within a right circular cone
import math
 
# Function to find the side of the cube
def cubeSide(h, r):
 
    # height and radius cannot
    # be negative
    if (h < 0 and r < 0):
        return -1
 
    # side of the cube
    a = ((h * r * math.sqrt(2)) /
         (h + math.sqrt(2) * r))
 
    return a
 
# Driver code
h = 5; r = 6;
 
print(cubeSide(h, r), "\n")
 
# This code is contributed
# by Akanksha Rai


C#




// C# Program to find the 
// biggest cube which can be
// inscribed within a right
// circular cone
using System;
 
class GFG
{
 
// Function to find the side
// of the cube
static float cube(float h, float r)
{
 
// height and radius cannot be negative
if (h < 0 && r < 0)
    return -1;
 
// side of the cube
float a = (h * r * (float)Math.Sqrt(2)) /
          (h + (float)Math.Sqrt(2) * r);
 
    return a;
}
 
// Driver code
public static void Main ()
{
    float h = 5, r = 6;
    Console.Write( cube(h, r));
}
}
 
// This code is contributed
// by 29AjayKumar


PHP




<?php
// PHP Program to find the biggest cube
// inscribed within a right circular cone
 
// Function to find the side of the cube
function cubeSide($h, $r)
{
    // height and radius cannot
    // be negative
    if ($h < 0 && $r < 0)
        return -1;
 
    // side of the cube
    $a = ($h * $r * sqrt(2)) /
         ($h + sqrt(2) * $r);
 
    return $a;
}
 
// Driver code
$h = 5;
$r = 6;
 
echo cubeSide($h, $r);
 
// This code is contributed
// by Shivi_Aggarwal
?>


Javascript




<script>
 
// javascript Program to find the biggest cube
// which can be inscribed within a right circular cone
 
// Function to find the side of the cube
 
function cube(h , r)
{
 
    // height and radius cannot be negative
    if (h < 0 && r < 0)
        return -1;
 
 // side of the cube
    var a = (h * r * Math.sqrt(2)) / (h + Math.sqrt(2) * r);
   
    return a;
}
 
// Driver code
   
var h = 5, r = 6;
document.write( cube(h, r).toFixed(5));
 
// This code is contributed by 29AjayKumar
 
</script>


Output: 

3.14613

 

Time Complexity: O(1)

Auxiliary Space: O(1), since no extra space has been taken.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Dominic
32352 POSTS0 COMMENTS
Milvus
87 POSTS0 COMMENTS
Nango Kala
6720 POSTS0 COMMENTS
Nicole Veronica
11885 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11941 POSTS0 COMMENTS
Shaida Kate Naidoo
6840 POSTS0 COMMENTS
Ted Musemwa
7103 POSTS0 COMMENTS
Thapelo Manthata
6794 POSTS0 COMMENTS
Umr Jansen
6794 POSTS0 COMMENTS