Given three integers A, B and C. The task is to count the number of triples (a, b, c) such that a * c > b2, where 0 < a <= A, 0 < b <= B and 0 < c <= C.
Examples:
Input: A = 3, B = 2, C = 2
Output: 6
Following triples are counted :
(1, 1, 2), (2, 1, 1), (2, 1, 2), (3, 1, 1), (3, 1, 2) and (3, 2, 2).
Input: A = 3, B = 3, C = 3
Output: 11
Naive approach:
The brute force approach is to consider all possible triples (a, b, c) and count those triples that satisfy the constraint a*c > b2.
Below is the implementation of the given approach.
C++
// C++ implementation #include <bits/stdc++.h> using namespace std; // function to return the count // of the valid triplets long long countTriplets( int A, int B, int C) { long long ans = 0; for ( int i = 1; i <= A; i++) { for ( int j = 1; j <= B; j++) { for ( int k = 1; k <= C; k++) { if (i * k > j * j) ans++; } } } return ans; } // Driver Code int main() { int A, B, C; A = 3, B = 2, C = 2; // function calling cout << countTriplets(A, B, C); } |
Java
// Java implementation of above approach import java.util.*; class GFG { // function to return the count // of the valid triplets static long countTriplets( int A, int B, int C) { long ans = 0 ; for ( int i = 1 ; i <= A; i++) { for ( int j = 1 ; j <= B; j++) { for ( int k = 1 ; k <= C; k++) { if (i * k > j * j) ans++; } } } return ans; } // Driver Code public static void main (String[] args) { int A = 3 , B = 2 , C = 2 ; // function calling System.out.println(countTriplets(A, B, C)); } } // This code is contributed by PrinciRaj1992 |
Python3
# Python3 implementation for above approach # function to return the count # of the valid triplets def countTriplets(A, B, C): ans = 0 for i in range ( 1 , A + 1 ): for j in range ( 1 , B + 1 ): for k in range ( 1 , C + 1 ): if (i * k > j * j): ans + = 1 return ans # Driver Code A = 3 B = 2 C = 2 # function calling print (countTriplets(A, B, C)) # This code is contributed by Mohit Kumar |
C#
// C# implementation of above approach using System; class GFG { // function to return the count // of the valid triplets static long countTriplets( int A, int B, int C) { long ans = 0; for ( int i = 1; i <= A; i++) { for ( int j = 1; j <= B; j++) { for ( int k = 1; k <= C; k++) { if (i * k > j * j) ans++; } } } return ans; } // Driver Code public static void Main (String[] args) { int A = 3, B = 2, C = 2; // function calling Console.WriteLine(countTriplets(A, B, C)); } } // This code is contributed by 29AjayKumar |
Javascript
<script> // Javascript implementation // function to return the count // of the valid triplets function countTriplets(A, B, C) { let ans = 0; for (let i = 1; i <= A; i++) { for (let j = 1; j <= B; j++) { for (let k = 1; k <= C; k++) { if (i * k > j * j) ans++; } } } return ans; } // Driver Code let A, B, C; A = 3, B = 2, C = 2; // function calling document.write(countTriplets(A, B, C)); </script> |
6
Time Complexity: since three nested loops are used the time taken by the algorithm to complete all operations is O(A*B*C).
Auxiliary Space: O(1), since no extra array is used so the space taken by the algorithm is constant
Efficient approach:
Let us count all triplets for a given value of b = k for all k from 1 to B.
- For a given b = k we need to find all a = i and c = j that satisfy i * j > k2
- For a = i, find smallest c = j that satisfies the condition.
Since c = j satisfies this condition therefore c = j + 1, c = j + 2, … and so on, will also satisfy the condition.
So we can easily count all triples in which a = i and b = k. - Also if for some a = i, c = j is the smallest value such that the given condition is satisfied so it can be observed that a = j and all c >= i also satisfy the condition.
The condition is also satisfied by a = j + 1 and c >= i that is all values a >= j and c >= i also satisfy the condition. - The above observation helps us to count all triples in which b = k and a >= j easily.
- Now we need to count all triples in which b = k and i < a < j.
- Thus for a given value of b = k we only need to go upto a = square root of k.
Below is the implementation of the above approach:
C++
// C++ implementation #include <bits/stdc++.h> using namespace std; // Counts the number of triplets // for a given value of b long long getCount( int A, int B2, int C) { long long count = 0; // Count all triples in which a = i for ( int i = 1; i <= A; i++) { // Smallest value j // such that i*j > B2 long long j = (B2 / i) + 1; // Count all (i, B2, x) // such that x >= j if (C >= j) count = (count + C - j + 1); // count all (x, B2, y) such // that x >= j this counts // all such triples in // which a >= j if (A >= j && C >= i) count = (count + (C - i + 1) * (A - j + 1)); // As all triples with a >= j // have been counted reduce // A to j - 1. if (A >= j) A = j - 1; } return count; } // Counts the number of triples that // satisfy the given constraints long long countTriplets( int A, int B, int C) { long long ans = 0; for ( int i = 1; i <= B; i++) { // GetCount of triples in which b = i ans = (ans + getCount(A, i * i, C)); } return ans; } // Driver Code int main() { int A, B, C; A = 3, B = 2, C = 2; // Function calling cout << countTriplets(A, B, C); } |
Java
// Java implementation of the approach import java.util.*; class GFG { // Counts the number of triplets // for a given value of b static long getCount( int A, int B2, int C) { long count = 0 ; // Count all triples in which a = i for ( int i = 1 ; i <= A; i++) { // Smallest value j // such that i*j > B2 long j = (B2 / i) + 1 ; // Count all (i, B2, x) // such that x >= j if (C >= j) count = (count + C - j + 1 ); // count all (x, B2, y) such // that x >= j this counts // all such triples in // which a >= j if (A >= j && C >= i) count = (count + (C - i + 1 ) * (A - j + 1 )); // As all triples with a >= j // have been counted reduce // A to j - 1. if (A >= j) A = ( int ) (j - 1 ); } return count; } // Counts the number of triples that // satisfy the given constraints static long countTriplets( int A, int B, int C) { long ans = 0 ; for ( int i = 1 ; i <= B; i++) { // GetCount of triples in which b = i ans = (ans + getCount(A, i * i, C)); } return ans; } // Driver Code public static void main(String[] args) { int A, B, C; A = 3 ; B = 2 ; C = 2 ; // Function calling System.out.println(countTriplets(A, B, C)); } } // This code is contributed by Princi Singh |
Python3
# Python3 implementation # Counts the number of triplets # for a given value of b def getCount(A, B2, C): count = 0 # Count all triples in which a = i i = 1 while (i<A): # Smallest value j # such that i*j > B2 j = (B2 / / i) + 1 # Count all (i, B2, x) # such that x >= j if (C > = j): count = count + C - j + 1 # count all (x, B2, y) such # that x >= j this counts # all such triples in # which a >= j if (A> = j and C > = i): count = count + (C - i + 1 ) * (A - j + 1 ) # As all triples with a >= j # have been counted reduce # A to j - 1. if (A > = j): A = j - 1 i + = 1 return count # Counts the number of triples that # satisfy the given constraints def countTriplets(A, B, C): ans = 0 for i in range ( 1 ,B + 1 ): # GetCount of triples in which b = i ans = (ans + getCount(A, i * i, C)) return ans # Driver Code A = 3 B = 2 C = 2 # Function calling print (countTriplets(A, B, C)) # This code is contributed by shubhamsingh10 |
C#
// C# implementation of the approach using System; using System.Collections.Generic; class GFG { // Counts the number of triplets // for a given value of b static long getCount( int A, int B2, int C) { long count = 0; // Count all triples in which a = i for ( int i = 1; i <= A; i++) { // Smallest value j // such that i*j > B2 long j = (B2 / i) + 1; // Count all (i, B2, x) // such that x >= j if (C >= j) count = (count + C - j + 1); // count all (x, B2, y) such // that x >= j this counts // all such triples in // which a >= j if (A >= j && C >= i) count = (count + (C - i + 1) * (A - j + 1)); // As all triples with a >= j // have been counted reduce // A to j - 1. if (A >= j) A = ( int ) (j - 1); } return count; } // Counts the number of triples that // satisfy the given constraints static long countTriplets( int A, int B, int C) { long ans = 0; for ( int i = 1; i <= B; i++) { // GetCount of triples in which b = i ans = (ans + getCount(A, i * i, C)); } return ans; } // Driver Code public static void Main(String[] args) { int A, B, C; A = 3; B = 2; C = 2; // Function calling Console.WriteLine(countTriplets(A, B, C)); } } // This code is contributed by Princi Singh |
Javascript
<script> // Javascript implementation // Counts the number of triplets // for a given value of b function getCount(A, B2, C) { let count = 0; // Count all triples in which a = i for (let i = 1; i <= A; i++) { // Smallest value j // such that i*j > B2 let j = parseInt(B2 / i) + 1; // Count all (i, B2, x) // such that x >= j if (C >= j) count = (count + C - j + 1); // count all (x, B2, y) such // that x >= j this counts // all such triples in // which a >= j if (A >= j && C >= i) count = (count + (C - i + 1) * (A - j + 1)); // As all triples with a >= j // have been counted reduce // A to j - 1. if (A >= j) A = j - 1; } return count; } // Counts the number of triples that // satisfy the given constraints function countTriplets(A, B, ) { let ans = 0; for (let i = 1; i <= B; i++) { // GetCount of triples in which b = i ans = (ans + getCount(A, i * i, C)); } return ans; } // Driver Code let A, B, C; A = 3, B = 2, C = 2; // Function calling document.write(countTriplets(A, B, C)); </script> |
6
Time Complexity: O(A*B), since two nested loops are used the time taken by the algorithm to complete all operations is O(A*B).
Auxiliary Space: O(1), since no extra array is used so the space taken by the algorithm is constant
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!