Wednesday, October 8, 2025
HomeData Modelling & AIC Program for Iterative Merge Sort

C Program for Iterative Merge Sort

Following is a typical recursive implementation of Merge Sort that uses last element as pivot. 

C




/* Recursive C program for merge sort */
#include <stdio.h> 
#include <stdlib.h> 
  
/* Function to merge the two haves arr[l..m] and arr[m+1..r] of array arr[] */
void merge(int arr[], int l, int m, int r); 
  
/* l is for left index and r is right index of the sub-array 
of arr to be sorted */
void mergeSort(int arr[], int l, int r) 
 if (l < r) { 
  int m = l + (r - l) / 2; // Same as (l+r)/2 but avoids overflow for large l & h 
  mergeSort(arr, l, m); 
  mergeSort(arr, m + 1, r); 
  merge(arr, l, m, r); 
 
  
/* Function to merge the two haves arr[l..m] and arr[m+1..r] of array arr[] */
void merge(int arr[], int l, int m, int r) 
 int i, j, k; 
 int n1 = m - l + 1; 
 int n2 = r - m; 
  
 /* create temp arrays */
 int L[n1], R[n2]; 
  
 /* Copy data to temp arrays L[] and R[] */
 for (i = 0; i < n1; i++) 
  L[i] = arr[l + i]; 
 for (j = 0; j < n2; j++) 
  R[j] = arr[m + 1 + j]; 
  
 /* Merge the temp arrays back into arr[l..r]*/
 i = 0; 
 j = 0; 
 k = l; 
 while (i < n1 && j < n2) { 
  if (L[i] <= R[j]) { 
   arr[k] = L[i]; 
   i++; 
  
  else
   arr[k] = R[j]; 
   j++; 
  
  k++; 
 
  
 /* Copy the remaining elements of L[], if there are any */
 while (i < n1) { 
  arr[k] = L[i]; 
  i++; 
  k++; 
 
  
 /* Copy the remaining elements of R[], if there are any */
 while (j < n2) { 
  arr[k] = R[j]; 
  j++; 
  k++; 
 
  
/* Function to print an array */
void printArray(int A[], int size) 
 int i; 
 for (i = 0; i < size; i++) 
  printf("%d ", A[i]); 
 printf("\n"); 
  
/* Driver program to test above functions */
int main() 
 int arr[] = { 12, 11, 13, 5, 6, 7 }; 
 int arr_size = sizeof(arr) / sizeof(arr[0]); 
  
 printf("Given array is \n"); 
 printArray(arr, arr_size); 
  
 mergeSort(arr, 0, arr_size - 1); 
  
 printf("\nSorted array is \n"); 
 printArray(arr, arr_size); 
 return 0; 


Output:

Given array is 
12 11 13 5 6 7 

Sorted array is 
5 6 7 11 12 13

Time Complexity: O(n*log(n))
Auxiliary Space: O(n)

Please refer complete article on Iterative Merge Sort for more details!

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32342 POSTS0 COMMENTS
Milvus
87 POSTS0 COMMENTS
Nango Kala
6712 POSTS0 COMMENTS
Nicole Veronica
11875 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11937 POSTS0 COMMENTS
Shaida Kate Naidoo
6833 POSTS0 COMMENTS
Ted Musemwa
7092 POSTS0 COMMENTS
Thapelo Manthata
6786 POSTS0 COMMENTS
Umr Jansen
6789 POSTS0 COMMENTS