Thursday, October 9, 2025
HomeData Modelling & AICount the nodes of the given tree whose weight has X as...

Count the nodes of the given tree whose weight has X as a factor

Given a tree, and the weights of all the nodes, the task is to count the nodes whose weights are divisible by x.
Examples: 
 

Input: 
 

x = 5 
Output:
Only the nodes 1 and 2 have weights divisible by 5. 
 

 

Approach: Perform dfs on the tree and for every node, check if it’s weight is divisible by x or not. If yes then increment the count.
Implementation: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
long ans = 0;
int x;
vector<int> graph[100];
vector<int> weight(100);
 
// Function to perform dfs
void dfs(int node, int parent)
{
 
    // If weight of the current node
    // is divisible by x
    if (weight[node] % x == 0)
        ans += 1;
 
    for (int to : graph[node]) {
        if (to == parent)
            continue;
        dfs(to, node);
    }
}
 
// Driver code
int main()
{
    x = 5;
 
    // Weights of the node
    weight[1] = 5;
    weight[2] = 10;
    weight[3] = 11;
    weight[4] = 8;
    weight[5] = 6;
 
    // Edges of the tree
    graph[1].push_back(2);
    graph[2].push_back(3);
    graph[2].push_back(4);
    graph[1].push_back(5);
 
    dfs(1, 1);
 
    cout << ans;
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
     
static long ans = 0;
static int x;
static Vector<Vector<Integer>> graph=new Vector<Vector<Integer>>();
static Vector<Integer> weight=new Vector<Integer>();
 
// Function to perform dfs
static void dfs(int node, int parent)
{
 
    // If weight of the current node
    // is divisible by x
    if (weight.get(node) % x == 0)
        ans += 1;
 
    for (int i = 0; i < graph.get(node).size(); i++)
    {
        if (graph.get(node).get(i) == parent)
            continue;
        dfs(graph.get(node).get(i), node);
    }
}
 
// Driver code
public static void main(String args[])
{
    x = 5;
 
    // Weights of the node
    weight.add(0);
    weight.add(5);
    weight.add(10);;
    weight.add(11);;
    weight.add(8);
    weight.add(6);
     
    for(int i = 0; i < 100; i++)
    graph.add(new Vector<Integer>());
 
    // Edges of the tree
    graph.get(1).add(2);
    graph.get(2).add(3);
    graph.get(2).add(4);
    graph.get(1).add(5);
 
    dfs(1, 1);
 
    System.out.println(ans);
}
}
 
// This code is contributed by Arnab Kundu


Python3




# Python3 implementation of the approach
ans = 0
 
graph = [[] for i in range(100)]
weight = [0] * 100
 
# Function to perform dfs
def dfs(node, parent):
    global ans,x
     
    # If weight of the current node
    # is divisible by x
    if (weight[node] % x == 0):
        ans += 1
    for to in graph[node]:
        if (to == parent):
            continue
        dfs(to, node)
 
# Driver code
x = 5
 
# Weights of the node
weight[1] = 5
weight[2] = 10
weight[3] = 11
weight[4] = 8
weight[5] = 6
 
# Edges of the tree
graph[1].append(2)
graph[2].append(3)
graph[2].append(4)
graph[1].append(5)
 
dfs(1, 1)
print(ans)
 
# This code is contributed by SHUBHAMSINGH10


C#




// C# implementation of the approach
using System;
using System.Collections.Generic;
 
class GFG
{
     
static long ans = 0;
static int x;
static List<List<int>> graph = new List<List<int>>();
static List<int> weight = new List<int>();
 
// Function to perform dfs
static void dfs(int node, int parent)
{
 
    // If weight of the current node
    // is divisible by x
    if (weight[node] % x == 0)
        ans += 1;
 
    for (int i = 0; i < graph[node].Count; i++)
    {
        if (graph[node][i] == parent)
            continue;
        dfs(graph[node][i], node);
    }
}
 
// Driver code
public static void Main(String []args)
{
    x = 5;
 
    // Weights of the node
    weight.Add(0);
    weight.Add(5);
    weight.Add(10);;
    weight.Add(11);;
    weight.Add(8);
    weight.Add(6);
     
    for(int i = 0; i < 100; i++)
    graph.Add(new List<int>());
 
    // Edges of the tree
    graph[1].Add(2);
    graph[2].Add(3);
    graph[2].Add(4);
    graph[1].Add(5);
 
    dfs(1, 1);
 
    Console.WriteLine(ans);
}
}
 
// This code contributed by Rajput-Ji


Javascript




<script>
  
// Javascript implementation of the approach
     
    
let ans = 0;
let x;
 
let graph = new Array(100);
let weight = new Array(100);
for(let i = 0; i < 100; i++)
{
    graph[i] = [];
    weight[i] = 0;
}
 
// Function to perform dfs
function dfs(node, parent)
{
    // If weight of the current node
    // is divisible by x
    if (weight[node] % x == 0)
        ans += 1;
 
    for(let to=0;to<graph[node].length;to++) {
        if(graph[node][to] == parent)
            continue
        dfs(graph[node][to], node); 
    }
}
 
// Driver code
    x = 5;
 
    // Weights of the node
    weight[1] = 5;
    weight[2] = 10;
    weight[3] = 11;
    weight[4] = 8;
    weight[5] = 6;
 
    // Edges of the tree
    graph[1].push(2);
    graph[2].push(3);
    graph[2].push(4);
    graph[1].push(5);
 
    dfs(1, 1);
 
    document.write(ans);
 
    // This code is contributed by Dharanendra L V.
      
</script>


Output: 

2

 

Complexity Analysis: 
 

  • Time Complexity: O(N). 
    In DFS, every node of the tree is processed once and hence the complexity due to the DFS is O(N) when there are total N nodes in the tree. Therefore, the time complexity is O(N).
  • Auxiliary Space: O(1). 
    Any extra space is not required, so the space complexity is constant.

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Dominic
32347 POSTS0 COMMENTS
Milvus
87 POSTS0 COMMENTS
Nango Kala
6715 POSTS0 COMMENTS
Nicole Veronica
11878 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11941 POSTS0 COMMENTS
Shaida Kate Naidoo
6837 POSTS0 COMMENTS
Ted Musemwa
7095 POSTS0 COMMENTS
Thapelo Manthata
6791 POSTS0 COMMENTS
Umr Jansen
6791 POSTS0 COMMENTS