Given a tree, and the weights of all the nodes, the task is to count the nodes whose weights are divisible by x.
Examples:
Input:
x = 5
Output: 2
Only the nodes 1 and 2 have weights divisible by 5.
Approach: Perform dfs on the tree and for every node, check if it’s weight is divisible by x or not. If yes then increment the count.
Implementation:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; long ans = 0; int x; vector< int > graph[100]; vector< int > weight(100); // Function to perform dfs void dfs( int node, int parent) { // If weight of the current node // is divisible by x if (weight[node] % x == 0) ans += 1; for ( int to : graph[node]) { if (to == parent) continue ; dfs(to, node); } } // Driver code int main() { x = 5; // Weights of the node weight[1] = 5; weight[2] = 10; weight[3] = 11; weight[4] = 8; weight[5] = 6; // Edges of the tree graph[1].push_back(2); graph[2].push_back(3); graph[2].push_back(4); graph[1].push_back(5); dfs(1, 1); cout << ans; return 0; } |
Java
// Java implementation of the approach import java.util.*; class GFG { static long ans = 0 ; static int x; static Vector<Vector<Integer>> graph= new Vector<Vector<Integer>>(); static Vector<Integer> weight= new Vector<Integer>(); // Function to perform dfs static void dfs( int node, int parent) { // If weight of the current node // is divisible by x if (weight.get(node) % x == 0 ) ans += 1 ; for ( int i = 0 ; i < graph.get(node).size(); i++) { if (graph.get(node).get(i) == parent) continue ; dfs(graph.get(node).get(i), node); } } // Driver code public static void main(String args[]) { x = 5 ; // Weights of the node weight.add( 0 ); weight.add( 5 ); weight.add( 10 );; weight.add( 11 );; weight.add( 8 ); weight.add( 6 ); for ( int i = 0 ; i < 100 ; i++) graph.add( new Vector<Integer>()); // Edges of the tree graph.get( 1 ).add( 2 ); graph.get( 2 ).add( 3 ); graph.get( 2 ).add( 4 ); graph.get( 1 ).add( 5 ); dfs( 1 , 1 ); System.out.println(ans); } } // This code is contributed by Arnab Kundu |
Python3
# Python3 implementation of the approach ans = 0 graph = [[] for i in range ( 100 )] weight = [ 0 ] * 100 # Function to perform dfs def dfs(node, parent): global ans,x # If weight of the current node # is divisible by x if (weight[node] % x = = 0 ): ans + = 1 for to in graph[node]: if (to = = parent): continue dfs(to, node) # Driver code x = 5 # Weights of the node weight[ 1 ] = 5 weight[ 2 ] = 10 weight[ 3 ] = 11 weight[ 4 ] = 8 weight[ 5 ] = 6 # Edges of the tree graph[ 1 ].append( 2 ) graph[ 2 ].append( 3 ) graph[ 2 ].append( 4 ) graph[ 1 ].append( 5 ) dfs( 1 , 1 ) print (ans) # This code is contributed by SHUBHAMSINGH10 |
C#
// C# implementation of the approach using System; using System.Collections.Generic; class GFG { static long ans = 0; static int x; static List<List< int >> graph = new List<List< int >>(); static List< int > weight = new List< int >(); // Function to perform dfs static void dfs( int node, int parent) { // If weight of the current node // is divisible by x if (weight[node] % x == 0) ans += 1; for ( int i = 0; i < graph[node].Count; i++) { if (graph[node][i] == parent) continue ; dfs(graph[node][i], node); } } // Driver code public static void Main(String []args) { x = 5; // Weights of the node weight.Add(0); weight.Add(5); weight.Add(10);; weight.Add(11);; weight.Add(8); weight.Add(6); for ( int i = 0; i < 100; i++) graph.Add( new List< int >()); // Edges of the tree graph[1].Add(2); graph[2].Add(3); graph[2].Add(4); graph[1].Add(5); dfs(1, 1); Console.WriteLine(ans); } } // This code contributed by Rajput-Ji |
Javascript
<script> // Javascript implementation of the approach let ans = 0; let x; let graph = new Array(100); let weight = new Array(100); for (let i = 0; i < 100; i++) { graph[i] = []; weight[i] = 0; } // Function to perform dfs function dfs(node, parent) { // If weight of the current node // is divisible by x if (weight[node] % x == 0) ans += 1; for (let to=0;to<graph[node].length;to++) { if (graph[node][to] == parent) continue dfs(graph[node][to], node); } } // Driver code x = 5; // Weights of the node weight[1] = 5; weight[2] = 10; weight[3] = 11; weight[4] = 8; weight[5] = 6; // Edges of the tree graph[1].push(2); graph[2].push(3); graph[2].push(4); graph[1].push(5); dfs(1, 1); document.write(ans); // This code is contributed by Dharanendra L V. </script> |
2
Complexity Analysis:
- Time Complexity: O(N).
In DFS, every node of the tree is processed once and hence the complexity due to the DFS is O(N) when there are total N nodes in the tree. Therefore, the time complexity is O(N). - Auxiliary Space: O(1).
Any extra space is not required, so the space complexity is constant.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!