Sunday, October 12, 2025
HomeData Modelling & AIConvert N to M with given operations using dynamic programming

Convert N to M with given operations using dynamic programming

Given two integers N and M and the task is to convert N to M with the following operations: 

  1. Multiply N by 2 i.e. N = N * 2.
  2. Subtract 1 from N i.e. N = N – 1.

Examples:  

Input: N = 4, M = 6 
Output:
Perform operation 2: N = N – 1 = 4 – 1 = 3 
Perform operation 1: N = N * 2 = 3 * 2 = 6

Input: N = 10, M = 1 
Output:

Approach: Create an array dp[] of size MAX = 105 + 5 to store the answer in order to prevent the same computation again and again and initialize all the array elements with -1.  

  • If N ? 0 or N ? MAX means it can not be converted to M so return MAX.
  • If N = M then return 0 as N got converted to M.
  • Else find the value at dp[N] if it is not -1, it means it has been calculated earlier so return dp[N].
  • If it is -1 then will call the recursive function as 2 * N and N – 1 and return the minimum because if N is odd then it can be reached only by performing N – 1 operation and if N is even then 2 * N operations have to be performed so check both the possibilities and return the minimum.

Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
const int N = 1e5 + 5;
 
int n, m;
int dp[N];
 
// Function to return the minimum
// number of given operations
// required to convert n to m
int minOperations(int k)
{
    // If k is either 0 or out of range
    // then return max
    if (k <= 0 || k >= 2e4) {
        return 1e9;
    }
 
    // If k = m then conversion is
    // complete so return 0
    if (k == m) {
        return 0;
    }
 
    int& ans = dp[k];
 
    // If it has been calculated earlier
    if (ans != -1) {
        return ans;
    }
    ans = 1e9;
 
    // Call for 2*k and k-1 and return
    // the minimum of them. If k is even
    // then it can be reached by 2*k operations
    // and If k is odd then it can be reached
    // by k-1 operations so try both cases
    // and return the minimum of them
    ans = 1 + min(minOperations(2 * k),
                  minOperations(k - 1));
    return ans;
}
 
// Driver code
int main()
{
    n = 4, m = 6;
    memset(dp, -1, sizeof(dp));
 
    cout << minOperations(n);
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
    static final int N = 10000;
    static int n, m;
    static int[] dp = new int[N];
 
    // Function to return the minimum
    // number of given operations
    // required to convert n to m
    static int minOperations(int k)
    {
 
        // If k is either 0 or out of range
        // then return max
        if (k <= 0 || k >= 10000)
            return 1000000000;
 
        // If k = m then conversion is
        // complete so return 0
        if (k == m)
            return 0;
 
        dp[k] = dp[k];
 
        // If it has been calculated earlier
        if (dp[k] != -1)
            return dp[k];
        dp[k] = 1000000000;
 
        // Call for 2*k and k-1 and return
        // the minimum of them. If k is even
        // then it can be reached by 2*k operations
        // and If k is odd then it can be reached
        // by k-1 operations so try both cases
        // and return the minimum of them
        dp[k] = 1 + Math.min(minOperations(2 * k),
                             minOperations(k - 1));
        return dp[k];
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        n = 4;
        m = 6;
        Arrays.fill(dp, -1);
        System.out.println(minOperations(n));
    }
}
 
// This code is contributed by
// sanjeev2552


Python3




# Python3 implementation of the approach
N = 1000
dp = [-1] * N
 
# Function to return the minimum
# number of given operations
# required to convert n to m
def minOperations(k):
 
    # If k is either 0 or out of range
    # then return max
    if (k <= 0 or k >= 1000):
        return 1e9
     
    # If k = m then conversion is
    # complete so return 0
    if (k == m):
        return 0
     
    dp[k] = dp[k]
     
    # If it has been calculated earlier
    if (dp[k] != -1):
        return dp[k]
     
    dp[k] = 1e9
     
    # Call for 2*k and k-1 and return
    # the minimum of them. If k is even
    # then it can be reached by 2*k operations
    # and If k is odd then it can be reached
    # by k-1 operations so try both cases
    # and return the minimum of them
    dp[k] = 1 + min(minOperations(2 * k),
                    minOperations(k - 1))
    return dp[k]
 
# Driver code
if __name__ == '__main__':
    n = 4
    m = 6
    print(minOperations(n))
     
# This code is contributed by ashutosh450


C#




// C# implementation of the approach
using System;
using System.Linq;
 
class GFG
{
    static int N = 10000;
    static int n, m;
    static int[] dp = Enumerable.Repeat(-1, N).ToArray();
 
    // Function to return the minimum
    // number of given operations
    // required to convert n to m
    static int minOperations(int k)
    {
 
        // If k is either 0 or out of range
        // then return max
        if (k <= 0 || k >= 10000)
            return 1000000000;
 
        // If k = m then conversion is
        // complete so return 0
        if (k == m)
            return 0;
 
        dp[k] = dp[k];
 
        // If it has been calculated earlier
        if (dp[k] != -1)
            return dp[k];
        dp[k] = 1000000000;
 
        // Call for 2*k and k-1 and return
        // the minimum of them. If k is even
        // then it can be reached by 2*k operations
        // and If k is odd then it can be reached
        // by k-1 operations so try both cases
        // and return the minimum of them
        dp[k] = 1 + Math.Min(minOperations(2 * k),
                             minOperations(k - 1));
        return dp[k];
    }
 
    // Driver Code
    public static void Main(String[] args)
    {
        n = 4;
        m = 6;
         
        //Arrays.fill(dp, -1);
        Console.Write(minOperations(n));
    }
}
 
// This code is contributed by
// Mohit kumar 29


Javascript




<script>
 
    let N = 10000;
    let n, m;
    let dp = new Array(N);
 
    function minOperations(k)
    {
     
        // If k is either 0 or out of range
        // then return max
        if (k <= 0 || k >= 10000)
            return 1000000000;
   
        // If k = m then conversion is
        // complete so return 0
        if (k == m)
            return 0;
   
        dp[k] = dp[k];
   
        // If it has been calculated earlier
        if (dp[k] != -1)
            return dp[k];
        dp[k] = 1000000000;
   
        // Call for 2*k and k-1 and return
        // the minimum of them. If k is even
        // then it can be reached by 2*k operations
        // and If k is odd then it can be reached
        // by k-1 operations so try both cases
        // and return the minimum of them
        dp[k] = 1 + Math.min(minOperations(2 * k),
                             minOperations(k - 1));
        return dp[k];
    }
     
    // Driver Code
    n = 4;
    m = 6;
    for(let i = 0; i < dp.length; i++)
    {
        dp[i] = -1;
    }
    document.write(minOperations(n));
 
// This code is contributed by unknown2108
</script>


Output: 

2

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Dominic
32353 POSTS0 COMMENTS
Milvus
87 POSTS0 COMMENTS
Nango Kala
6721 POSTS0 COMMENTS
Nicole Veronica
11885 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11943 POSTS0 COMMENTS
Shaida Kate Naidoo
6841 POSTS0 COMMENTS
Ted Musemwa
7105 POSTS0 COMMENTS
Thapelo Manthata
6797 POSTS0 COMMENTS
Umr Jansen
6798 POSTS0 COMMENTS