Given a positive integer N, the task is to find the number of binary strings of length N which contains “11” as a substring.
Examples:
Input: N = 2
Output: 1
Explanation: The only string of length 2 that has “11” as a substring is “11”.Input: N = 12
Output: 3719
Approach: The idea is to derive the number of possibilities of having “11” as a substring for binary representations starting with 0 or 1 based on the following observations:
- If the first bit is 0, then the starting bit does not contribute to the string having “11” as a substring. Therefore, the remaining (N – 1) bits have to form a string having “11” as a substring.
- If the first bit is 1 and the following bit is also 1, then there exists 2(N – 2) strings having “11” as a substring.
- If the first bit is 1 but the following bit is 0, then a string having “11” as a substring can be formed with remaining (N – 2) bits.
- Therefore, the recurrence relation to generate all the binary strings of length N is:
dp[i] = dp[i – 1] + dp[i – 2] + 2(i – 2)
where,
dp[i] is the string of length i having “11” as a substring.
and dp[0] = dp[1] = 0.
Recursive Solution (Naive Solution):
here we have to find the number of possibilities having “11” as a substring for binary representation starting with 0 or 1 based on the observations. so above mentioned approach is for that. but in a recursive solution if we want to find the solution for i then that should be calculated as follows,
binaryStrings(i) = binaryStrings(i-1) + binaryStrings(i-2) + 2(i-2)
which can be solved recursively as follow.
C++
// Recursive C++ program for the above approach#include <bits/stdc++.h>using namespace std;// Function to count binary strings of length N having substring "11"int binaryStrings(int N) { // Base Cases if (N == 0 || N == 1) { return 0; } // Recursively calculate answer for current state return binaryStrings(N - 1) + binaryStrings(N - 2) + (1 << (N - 2)); // 1<<(i-2) means power of 2^(i-2)}// Driver Codeint main(){ int N = 12; cout << binaryStrings(N); return 0;} |
Java
import java.util.*;public class Main { // Function to count binary strings of length N having // substring "11" static int BinaryStrings(int N) { // Base Cases if (N == 0 || N == 1) { return 0; } // Recursively calculate answer for current state return BinaryStrings(N - 1) + BinaryStrings(N - 2) + (1 << (N - 2)); // 1<<(i-2) means power of 2^(i-2) } // Driver Code public static void main(String[] args) { int N = 12; System.out.println(BinaryStrings(N)); }} |
Python3
# Function to count binary strings of length N having substring "11"def binaryStrings(N: int) -> int: # Base Cases if N == 0 or N == 1: return 0 # Recursively calculate answer for current state return binaryStrings(N - 1) + binaryStrings(N - 2) + (1 << (N - 2)) # 1<<(i-2) means power of 2^(i-2)# Driver Codeif __name__ == "__main__": N = 12 print(binaryStrings(N)) |
C#
using System;public class Program { // Function to count binary strings of length N having substring "11" static int BinaryStrings(int N) { // Base Cases if (N == 0 || N == 1) { return 0; } // Recursively calculate answer for current state return BinaryStrings(N - 1) + BinaryStrings(N - 2) + (1 << (N - 2)); // 1<<(i-2) means power of 2^(i-2) } // Driver Code public static void Main() { int N = 12; Console.WriteLine(BinaryStrings(N)); }} |
Javascript
// Function to count binary strings of length N having substring "11"function binaryStrings(N) { // Base Cases if (N == 0 || N == 1) { return 0; } // Recursively calculate answer for current state return binaryStrings(N - 1) + binaryStrings(N - 2) + (1 << (N - 2)); // 1<<(i-2) means power of 2^(i-2)}// Driver Codelet N = 12;console.log(binaryStrings(N)); |
3719
Optimized Solution:
Follow the steps below to solve the problem:
- Initialize an array, say dp[], of size (N + 1) and assign dp[0] as 0 and dp[1] as 0.
- Precompute the first N powers of 2 and store it in an array, say power[].
- Iterate over the range [2, N] and update dp[i] as (dp[i – 1] + dp[i – 2] + power[i – 2]).
- After completing the above steps, print the value of dp[N] as the result.
Below is the implementation of the above approach:
C++
// C++ program for the above approach#include <bits/stdc++.h>using namespace std;// Function to count binary strings// of length N having substring "11"void binaryStrings(int N){ // Initialize dp[] of size N + 1 int dp[N + 1]; // Base Cases dp[0] = 0; dp[1] = 0; // Iterate over the range [2, N] for (int i = 2; i <= N; i++) { dp[i] = dp[i - 1] + dp[i - 2] + (1<<(i-2)); // 1<<(i-2) means power of 2^(i-2) } // Print total count of substrings cout << dp[N];}// Driver Codeint main(){ int N = 12; binaryStrings(N); return 0;} |
Java
// Java program for the above approachimport java.util.*;class GFG{// Function to count binary strings// of length N having substring "11"static void binaryStrings(int N){ // Initialize dp[] of size N + 1 int[] dp = new int[N + 1]; // Base Cases dp[0] = 0; dp[1] = 0; // Stores the first N powers of 2 int[] power = new int[N + 1]; power[0] = 1; // Generate for(int i = 1; i <= N; i++) { power[i] = 2 * power[i - 1]; } // Iterate over the range [2, N] for(int i = 2; i <= N; i++) { dp[i] = dp[i - 1] + dp[i - 2] + power[i - 2]; } // Print total count of substrings System.out.println(dp[N]);}// Driver Codepublic static void main(String[] args){ int N = 12; binaryStrings(N);}}// This code is contributed by ukasp |
Python3
# Python3 program for the above approach# Function to count binary strings# of length N having substring "11"def binaryStrings(N): # Initialize dp[] of size N + 1 dp = [0]*(N + 1) # Base Cases dp[0] = 0 dp[1] = 0 # Stores the first N powers of 2 power = [0]*(N + 1) power[0] = 1 # Generate for i in range(1, N + 1): power[i] = 2 * power[i - 1] # Iterate over the range [2, N] for i in range(2, N + 1): dp[i] = dp[i - 1] + dp[i - 2] + power[i - 2] # Prtotal count of substrings print (dp[N])# Driver Codeif __name__ == '__main__': N = 12 binaryStrings(N) # This code is contributed by mohit kumar 29. |
C#
// C# program for the above approachusing System;using System.Collections.Generic;class GFG{ // Function to count binary strings // of length N having substring "11" static void binaryStrings(int N) { // Initialize dp[] of size N + 1 int []dp = new int[N + 1]; // Base Cases dp[0] = 0; dp[1] = 0; // Stores the first N powers of 2 int []power = new int[N + 1]; power[0] = 1; // Generate for (int i = 1; i <= N; i++) { power[i] = 2 * power[i - 1]; } // Iterate over the range [2, N] for (int i = 2; i <= N; i++) { dp[i] = dp[i - 1] + dp[i - 2] + power[i - 2]; } // Print total count of substrings Console.WriteLine(dp[N]); } // Driver Code public static void Main() { int N = 12; binaryStrings(N); }}// This code is contributed by bgangwar59. |
Javascript
<script>// JavaScript program for the above approach // Function to count binary strings // of length N having substring "11" function binaryStrings(N) { // Initialize dp of size N + 1 var dp = Array(N + 1).fill(0); // Base Cases dp[0] = 0; dp[1] = 0; // Stores the first N powers of 2 var power = Array(N+1).fill(0); power[0] = 1; // Generate for (i = 1; i <= N; i++) { power[i] = 2 * power[i - 1]; } // Iterate over the range [2, N] for (i = 2; i <= N; i++) { dp[i] = dp[i - 1] + dp[i - 2] + power[i - 2]; } // Print total count of substrings document.write(dp[N]); } // Driver Code var N = 12; binaryStrings(N);// This code contributed by aashish1995</script> |
3719
Time Complexity: O(N)
Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!
