Given an unsorted array, trim the array such that twice of minimum is greater than the maximum in the trimmed array. Elements should be removed from either end of the array. The number of removals should be minimum.
Examples:
Input: arr[] = {4, 5, 100, 9, 10, 11, 12, 15, 200} Output: 4 We need to remove 4 elements (4, 5, 100, 200) so that 2*min becomes more than max. Input: arr[] = {4, 7, 5, 6} Output: 0 We don’t need to remove any element as 4*2 > 7 Input: arr[] = {20, 7, 5, 6} Output: 1
Approach:
We have discussed various approaches to solve this problem in O(n
3
), O(n
2
* logn), and O(n
2
) time in
. In this articles, we are going to discuss a O(n * logn) time solution using
and
concepts.
- Construct Segment Tree for RangeMinimumQuery and RangeMaximumQuery for the given input array.
- Take two pointers start and end, and initialize both to 0.
- While end is less than the length of the input array, do the following:
- Find min and max in the current window using Segment Trees constructed in step 1.
- Check if 2 * min ≤ max, if so then increment start pointer else update max valid length so far, if required
- Increment end
- length(arr[]) – maxValidLength is the required answer.
Below is the implementation of the above approach:
C++
#include <iostream>#include <vector>#include <cmath>#include <bits/stdc++.h>using namespace std;Â
class GFG {public:Â Â Â Â int removeMinElements(vector<int>& a) {Â Â Â Â Â Â Â Â int n = a.size();Â
        RangeMinimumQuery rMimQ;        vector<int> minTree = rMimQ.createSegmentTree(a);Â
        RangeMaximumQuery rMaxQ;        vector<int> maxTree = rMaxQ.createSegmentTree(a);Â
        int start = 0;        int end = 0;Â
        // To store min and max in the current window        int min_val = 0;        int max_val = 0;        int maxValidLen = 0;Â
        while (end < n) {            min_val = rMimQ.rangeMinimumQuery(minTree, start, end, n);            max_val = rMaxQ.rangeMaximumQuery(maxTree, start, end, n);            if (2 * min_val <= max_val)                start++;            else                maxValidLen = max(maxValidLen, end - start + 1);            end++;        }        return n - maxValidLen;    }Â
    class RangeMinimumQuery {    public:        vector<int> createSegmentTree(vector<int>& input) {            int n = input.size();            int segTreeSize = 2 * get_next_power_of_two(n) - 1;            vector<int> segmentTree(segTreeSize, 0);Â
            createSegmentTreeUtil(segmentTree, input, 0, n - 1, 0);            return segmentTree;        }Â
        void createSegmentTreeUtil(vector<int>& segmentTree, vector<int>& input, int low, int high, int pos) {            if (low == high) {                // It's a leaf node                segmentTree[pos] = input[low];                return;            }Â
            // Construct left and right subtrees and then            // update value for the current node            int mid = (low + high) / 2;            createSegmentTreeUtil(segmentTree, input, low, mid, (2 * pos + 1));            createSegmentTreeUtil(segmentTree, input, mid + 1, high, (2 * pos + 2));            segmentTree[pos] = min(segmentTree[2 * pos + 1], segmentTree[2 * pos + 2]);        }Â
        int rangeMinimumQuery(vector<int>& segmentTree, int from, int to, int inputSize) {            return rangeMinimumQueryUtil(segmentTree, 0, inputSize - 1, from, to, 0);        }Â
        int rangeMinimumQueryUtil(vector<int>& segmentTree, int low, int high, int from, int to, int pos) {            // Total overlap            if (from <= low && to >= high) {                return segmentTree[pos];            }Â
            // No overlap            if (from > high || to < low) {                return INT_MAX;            }Â
            // Partial overlap            int mid = (low + high) / 2;            int left = rangeMinimumQueryUtil(segmentTree, low, mid, from, to, (2 * pos + 1));            int right = rangeMinimumQueryUtil(segmentTree, mid + 1, high, from, to, (2 * pos + 2));            return min(left, right);        }Â
    private:        int get_next_power_of_two(int n) {            int logPart = ceil(log2(n));            return pow(2, logPart);        }    };Â
    class RangeMaximumQuery {    public:        vector<int> createSegmentTree(vector<int>& input) {            int n = input.size();            int segTreeSize = 2 * get_next_power_of_two(n) - 1;            vector<int> segmentTree(segTreeSize, 0);Â
            createSegmentTreeUtil(segmentTree, input, 0, n - 1, 0);            return segmentTree;        }Â
        void createSegmentTreeUtil(vector<int>& segmentTree, vector<int>& input, int low, int high, int pos) {            if (low == high) {                // It's a leaf node                segmentTree[pos] = input[low];                return;            }Â
            // Construct left and right subtrees and then            // update value for the current node            int mid = (low + high) / 2;            createSegmentTreeUtil(segmentTree, input, low, mid, (2 * pos + 1));            createSegmentTreeUtil(segmentTree, input, mid + 1, high, (2 * pos + 2));            segmentTree[pos] = max(segmentTree[2 * pos + 1], segmentTree[2 * pos + 2]);        }Â
        int rangeMaximumQuery(vector<int>& segmentTree, int from, int to, int inputSize) {            return rangeMaximumQueryUtil(segmentTree, 0, inputSize - 1, from, to, 0);        }Â
        int rangeMaximumQueryUtil(vector<int>& segmentTree, int low, int high, int from, int to, int pos) {            // Total overlap            if (from <= low && to >= high) {                return segmentTree[pos];            }Â
            // No overlap            if (from > high || to < low) {                return INT_MIN;            }Â
            // Partial overlap            int mid = (low + high) / 2;            int left = rangeMaximumQueryUtil(segmentTree, low, mid, from, to, (2 * pos + 1));            int right = rangeMaximumQueryUtil(segmentTree, mid + 1, high, from, to, (2 * pos + 2));            return max(left, right);        }Â
    private:        int get_next_power_of_two(int n) {            int logPart = ceil(log2(n));            return pow(2, logPart);        }    };};Â
int main() {Â Â Â Â vector<int> a = {4, 5, 100, 9, 10, 11, 12, 15, 200};Â Â Â Â GFG gfg;Â Â Â Â cout << gfg.removeMinElements(a) << endl;Â Â Â Â return 0;} |
Java
// Java implementation of the approachpublic class GFG {Â
    // Function to return the minimum removals    // required so that the array satisfy    // the given condition    public int removeMinElements(int[] a)    {        int n = a.length;Â
        RangeMinimumQuery rMimQ = new RangeMinimumQuery();        int[] minTree = rMimQ.createSegmentTree(a);Â
        RangeMaximumQuery rMaxQ = new RangeMaximumQuery();        int[] maxTree = rMaxQ.createSegmentTree(a);Â
        int start = 0, end = 0;Â
        // To store min and max in the current window        int min, max;        int maxValidLen = 0;Â
        while (end < n) {            min = rMimQ.rangeMinimumQuery(minTree,                                          start, end, n);            max = rMaxQ.rangeMaximumQuery(maxTree,                                          start, end, n);            if (2 * min <= max)                start++;            else                maxValidLen = Math.max(maxValidLen,                                       end - start + 1);            end++;        }        return n - maxValidLen;    }Â
    class RangeMinimumQuery {Â
        // Creates a new segment tree from        // the given input array        public int[] createSegmentTree(int[] input)        {            int n = input.length;            int segTreeSize = 2 * getNextPowerOfTwo(n) - 1;            int[] segmentTree = new int[segTreeSize];Â
            createSegmentTreeUtil(segmentTree, input,                                  0, n - 1, 0);            return segmentTree;        }Â
        private void createSegmentTreeUtil(int[] segmentTree,                                           int[] input, int low,                                           int high, int pos)        {            if (low == high) {Â
                // Its a leaf node                segmentTree[pos] = input[low];                return;            }Â
            // Construct left and right subtrees and then            // update value for current node            int mid = (low + high) / 2;            createSegmentTreeUtil(segmentTree, input, low,                                  mid, (2 * pos + 1));            createSegmentTreeUtil(segmentTree, input,                                  mid + 1, high, (2 * pos + 2));            segmentTree[pos] = Math.min(segmentTree[2 * pos + 1],                                        segmentTree[2 * pos + 2]);        }Â
        public int rangeMinimumQuery(int[] segmentTree, int from,                                     int to, int inputSize)        {            return rangeMinimumQueryUtil(segmentTree, 0,                                         inputSize - 1, from, to, 0);        }Â
        private int rangeMinimumQueryUtil(int[] segmentTree, int low,                                        int high, int from, int to, int pos)        {            // Total overlap            if (from <= low && to >= high) {                return segmentTree[pos];            }Â
            // No overlap            if (from > high || to < low) {                return Integer.MAX_VALUE;            }Â
            // Partial overlap            int mid = (low + high) / 2;            int left = rangeMinimumQueryUtil(segmentTree, low,                                             mid, from, to,                                             (2 * pos + 1));            int right = rangeMinimumQueryUtil(segmentTree,                                              mid + 1, high, from,                                              to, (2 * pos + 2));            return Math.min(left, right);        }    }Â
    class RangeMaximumQuery {Â
        // Creates a new segment tree from given input array        public int[] createSegmentTree(int[] input)        {            int n = input.length;            int segTreeSize = 2 * getNextPowerOfTwo(n) - 1;            int[] segmentTree = new int[segTreeSize];Â
            createSegmentTreeUtil(segmentTree, input, 0, n - 1, 0);            return segmentTree;        }Â
        private void createSegmentTreeUtil(int[] segmentTree, int[] input,                                           int low, int high, int pos)        {            if (low == high) {Â
                // Its a leaf node                segmentTree[pos] = input[low];                return;            }Â
            // Construct left and right subtrees and then            // update value for current node            int mid = (low + high) / 2;            createSegmentTreeUtil(segmentTree, input, low,                                  mid, (2 * pos + 1));            createSegmentTreeUtil(segmentTree, input,                                  mid + 1, high, (2 * pos + 2));            segmentTree[pos] = Math.max(segmentTree[2 * pos + 1],                                        segmentTree[2 * pos + 2]);        }Â
        public int rangeMaximumQuery(int[] segmentTree,                                     int from, int to, int inputSize)        {            return rangeMaximumQueryUtil(segmentTree, 0,                                         inputSize - 1, from, to, 0);        }Â
        private int rangeMaximumQueryUtil(int[] segmentTree, int low,                                 int high, int from, int to, int pos)        {            // Total overlap            if (from <= low && to >= high) {                return segmentTree[pos];            }Â
            // No overlap            if (from > high || to < low) {                return Integer.MIN_VALUE;            }Â
            // Partial overlap            int mid = (low + high) / 2;            int left = rangeMaximumQueryUtil(segmentTree, low,                                             mid, from, to,                                             (2 * pos + 1));            int right = rangeMaximumQueryUtil(segmentTree,                                              mid + 1, high, from,                                              to, (2 * pos + 2));            return Math.max(left, right);        }    }Â
    // Function to return the minimum power of 2    // which is greater than n    private int getNextPowerOfTwo(int n)    {        int logPart = (int)Math.ceil(Math.log(n)                                     / Math.log(2));        return (int)Math.pow(2, logPart);    }Â
    // Driver code    public static void main(String[] args)    {        int[] a = { 4, 5, 100, 9, 10, 11, 12, 15, 200 };        GFG gfg = new GFG();        System.out.println(gfg.removeMinElements(a));    }} |
Python3
import mathÂ
class GFG:    # Function to return the minimum removals    # required so that the array satisfies    # the given condition    def removeMinElements(self, a):        n = len(a)Â
        rMimQ = self.RangeMinimumQuery()        minTree = rMimQ.createSegmentTree(a)Â
        rMaxQ = self.RangeMaximumQuery()        maxTree = rMaxQ.createSegmentTree(a)Â
        start = 0        end = 0Â
        # To store min and max in the current window        min_val = 0        max_val = 0        maxValidLen = 0Â
        while end < n:            min_val = rMimQ.rangeMinimumQuery(minTree, start, end, n)            max_val = rMaxQ.rangeMaximumQuery(maxTree, start, end, n)            if 2 * min_val <= max_val:                start += 1            else:                maxValidLen = max(maxValidLen, end - start + 1)            end += 1        return n - maxValidLenÂ
    class RangeMinimumQuery:        def createSegmentTree(self, input):            n = len(input)            segTreeSize = 2 * self.get_next_power_of_two(n) - 1            segmentTree = [0] * segTreeSizeÂ
            self.createSegmentTreeUtil(segmentTree, input, 0, n - 1, 0)            return segmentTreeÂ
        def createSegmentTreeUtil(self, segmentTree, input, low, high, pos):            if low == high:                # It's a leaf node                segmentTree[pos] = input[low]                returnÂ
            # Construct left and right subtrees and then            # update value for the current node            mid = (low + high) // 2            self.createSegmentTreeUtil(segmentTree, input, low, mid, (2 * pos + 1))            self.createSegmentTreeUtil(segmentTree, input, mid + 1, high, (2 * pos + 2))            segmentTree[pos] = min(segmentTree[2 * pos + 1], segmentTree[2 * pos + 2])Â
        def rangeMinimumQuery(self, segmentTree, from_, to, inputSize):            return self.rangeMinimumQueryUtil(segmentTree, 0, inputSize - 1, from_, to, 0)Â
        def rangeMinimumQueryUtil(self, segmentTree, low, high, from_, to, pos):            # Total overlap            if from_ <= low and to >= high:                return segmentTree[pos]Â
            # No overlap            if from_ > high or to < low:                return float('inf')Â
            # Partial overlap            mid = (low + high) // 2            left = self.rangeMinimumQueryUtil(segmentTree, low, mid, from_, to, (2 * pos + 1))            right = self.rangeMinimumQueryUtil(segmentTree, mid + 1, high, from_, to, (2 * pos + 2))            return min(left, right)Â
        # Move the get_next_power_of_two method here        def get_next_power_of_two(self, n):            log_part = math.ceil(math.log(n) / math.log(2))            return 2 ** log_partÂ
    class RangeMaximumQuery:        # Move the get_next_power_of_two method here        def get_next_power_of_two(self, n):            log_part = math.ceil(math.log(n) / math.log(2))            return 2 ** log_part                     def createSegmentTree(self, input):            n = len(input)            segTreeSize = 2 * self.get_next_power_of_two(n) - 1            segmentTree = [0] * segTreeSizeÂ
            self.createSegmentTreeUtil(segmentTree, input, 0, n - 1, 0)            return segmentTreeÂ
        def createSegmentTreeUtil(self, segmentTree, input, low, high, pos):            if low == high:                # It's a leaf node                segmentTree[pos] = input[low]                returnÂ
            # Construct left and right subtrees and then            # update value for the current node            mid = (low + high) // 2            self.createSegmentTreeUtil(segmentTree, input, low, mid, (2 * pos + 1))            self.createSegmentTreeUtil(segmentTree, input, mid + 1, high, (2 * pos + 2))            segmentTree[pos] = max(segmentTree[2 * pos + 1], segmentTree[2 * pos + 2])Â
        def rangeMaximumQuery(self, segmentTree, from_, to, inputSize):            return self.rangeMaximumQueryUtil(segmentTree, 0, inputSize - 1, from_, to, 0)Â
        def rangeMaximumQueryUtil(self, segmentTree, low, high, from_, to, pos):            # Total overlap            if from_ <= low and to >= high:                return segmentTree[pos]Â
            # No overlap            if from_ > high or to < low:                return float('-inf')Â
            # Partial overlap            mid = (low + high) // 2            left = self.rangeMaximumQueryUtil(segmentTree, low, mid, from_, to, (2 * pos + 1))            right = self.rangeMaximumQueryUtil(segmentTree, mid + 1, high, from_, to, (2 * pos + 2))            return max(left, right)Â
# Driver codeif __name__ == "__main__":Â Â Â Â a = [4, 5, 100, 9, 10, 11, 12, 15, 200]Â Â Â Â gfg = GFG()Â Â Â Â print(gfg.removeMinElements(a)) |
C#
// C# implementation of the approachusing System;Â
class GFG{Â
    // Function to return the minimum removals    // required so that the array satisfy    // the given condition    static int removeMinElements(int[] a)    {        int n = a.Length;Â
        RangeMinimumQuery rMimQ = new RangeMinimumQuery();        int[] minTree = rMimQ.createSegmentTree(a);Â
        RangeMaximumQuery rMaxQ = new RangeMaximumQuery();        int[] maxTree = rMaxQ.createSegmentTree(a);Â
        int start = 0, end = 0;Â
        // To store min and max in the current window        int min, max;        int maxValidLen = 0;Â
        while (end < n)         {            min = rMimQ.rangeMinimumQuery(minTree,                                        start, end, n);            max = rMaxQ.rangeMaximumQuery(maxTree,                                        start, end, n);            if (2 * min <= max)                start++;            else                maxValidLen = Math.Max(maxValidLen,                                    end - start + 1);            end++;        }        return n - maxValidLen;    }Â
    class RangeMinimumQuery {Â
        // Creates a new segment tree from        // the given input array        public int[] createSegmentTree(int[] input)        {            int n = input.Length;            int segTreeSize = 2 * getNextPowerOfTwo(n) - 1;            int[] segmentTree = new int[segTreeSize];Â
            createSegmentTreeUtil(segmentTree, input,                                0, n - 1, 0);            return segmentTree;        }Â
        public void createSegmentTreeUtil(int[] segmentTree,                                        int[] input, int low,                                        int high, int pos)        {            if (low == high) {Â
                // Its a leaf node                segmentTree[pos] = input[low];                return;            }Â
            // Construct left and right subtrees and then            // update value for current node            int mid = (low + high) / 2;            createSegmentTreeUtil(segmentTree, input, low,                                mid, (2 * pos + 1));            createSegmentTreeUtil(segmentTree, input,                                mid + 1, high, (2 * pos + 2));            segmentTree[pos] = Math.Min(segmentTree[2 * pos + 1],                                        segmentTree[2 * pos + 2]);        }Â
        public int rangeMinimumQuery(int[] segmentTree, int from,                                    int to, int inputSize)        {            return rangeMinimumQueryUtil(segmentTree, 0,                                        inputSize - 1, from, to, 0);        }Â
        static int rangeMinimumQueryUtil(int[] segmentTree, int low,                                        int high, int from, int to, int pos)        {            // Total overlap            if (from <= low && to >= high) {                return segmentTree[pos];            }Â
            // No overlap            if (from > high || to < low) {                return int.MaxValue;            }Â
            // Partial overlap            int mid = (low + high) / 2;            int left = rangeMinimumQueryUtil(segmentTree, low,                                            mid, from, to,                                            (2 * pos + 1));            int right = rangeMinimumQueryUtil(segmentTree,                                            mid + 1, high, from,                                            to, (2 * pos + 2));            return Math.Min(left, right);        }    }Â
    class RangeMaximumQuery {Â
        // Creates a new segment tree from given input array        public int[] createSegmentTree(int[] input)        {            int n = input.Length;            int segTreeSize = 2 * getNextPowerOfTwo(n) - 1;            int[] segmentTree = new int[segTreeSize];Â
            createSegmentTreeUtil(segmentTree, input, 0, n - 1, 0);            return segmentTree;        }Â
        public void createSegmentTreeUtil(int[] segmentTree, int[] input,                                        int low, int high, int pos)        {            if (low == high) {Â
                // Its a leaf node                segmentTree[pos] = input[low];                return;            }Â
            // Construct left and right subtrees and then            // update value for current node            int mid = (low + high) / 2;            createSegmentTreeUtil(segmentTree, input, low,                                mid, (2 * pos + 1));            createSegmentTreeUtil(segmentTree, input,                                mid + 1, high, (2 * pos + 2));            segmentTree[pos] = Math.Max(segmentTree[2 * pos + 1],                                        segmentTree[2 * pos + 2]);        }Â
        public int rangeMaximumQuery(int[] segmentTree,                                    int from, int to, int inputSize)        {            return rangeMaximumQueryUtil(segmentTree, 0,                                        inputSize - 1, from, to, 0);        }Â
        public int rangeMaximumQueryUtil(int[] segmentTree, int low,                                int high, int from, int to, int pos)        {            // Total overlap            if (from <= low && to >= high) {                return segmentTree[pos];            }Â
            // No overlap            if (from > high || to < low) {                return int.MinValue;            }Â
            // Partial overlap            int mid = (low + high) / 2;            int left = rangeMaximumQueryUtil(segmentTree, low,                                            mid, from, to,                                            (2 * pos + 1));            int right = rangeMaximumQueryUtil(segmentTree,                                            mid + 1, high, from,                                            to, (2 * pos + 2));            return Math.Max(left, right);        }    }Â
    // Function to return the minimum power of 2    // which is greater than n    static int getNextPowerOfTwo(int n)    {        int logPart = (int)Math.Ceiling(Math.Log(n)                                    / Math.Log(2));        return (int)Math.Pow(2, logPart);    }Â
    // Driver code    public static void Main(String[] args)    {        int[] a = { 4, 5, 100, 9, 10, 11, 12, 15, 200 };        Console.WriteLine(removeMinElements(a));    }}Â
// This code is contributed by Rajput-Ji |
4
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!
