With the help of sympy.stats.GammaInverse()
method, we can get the continuous random variable representing the inverse gamma distribution.
Syntax :
sympy.stats.GammaInverse(name, a, b)
Where, a and b denotes real number.
Return : Return continuous random variable.
Example #1 :
In this example we can see that by using sympy.stats.GammaInverse()
method, we are able to get the continuous random variable which represents the inverse gamma distribution by using this method.
# Import sympy and GammaInverse from sympy.stats import GammaInverse, density from sympy import Symbol a = Symbol( "a" , integer = True , positive = True ) b = Symbol( "b" , integer = True , positive = True ) z = Symbol( "z" ) # Using sympy.stats.GammaInverse() method X = GammaInverse( "x" , a, b) gfg = density(X)(z) pprint(gfg) |
Output :
-b
—
a -a – 1 z
b *z *e
—————
Gamma(a)
Example #2 :
# Import sympy and GammaInverse from sympy.stats import GammaInverse, density from sympy import Symbol a = 4 b = 3 z = 2 # Using sympy.stats.GammaInverse() method X = GammaInverse( "x" , a, b) gfg = density(X)(z) pprint(gfg) |
Output :
-3/2
27*e
——–
64