Saturday, November 15, 2025
HomeData Modelling & AIWays to divide a binary array into sub-arrays such that each sub-array...

Ways to divide a binary array into sub-arrays such that each sub-array contains exactly one 1

Give an integer array arr[] consisting of elements from the set {0, 1}. The task is to print the number of ways the array can be divided into sub-arrays such that each sub-array contains exactly one 1.

Examples: 

Input: arr[] = {1, 0, 1, 0, 1} 
Output:
Below are the possible ways: 

  • {1, 0}, {1, 0}, {1}
  • {1}, {0, 1, 0}, {1}
  • {1, 0}, {1}, {0, 1}
  • {1}, {0, 1}, {0, 1}

Input: arr[] = {0, 0, 0} 
Output:

Approach:

  • When all the elements of the array are 0, then the result will be zero.
  • Else, between two adjacent ones, we must have only one separation. So, the answer equals the product of values posi + 1 – posi (for all valid pairs) where posi is the position of ith 1.

Below is the implementation of the above approach:

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the number of ways
// the array can be divided into sub-arrays
// satisfying the given condition
int countWays(int arr[], int n)
{
 
    int pos[n], p = 0, i;
 
    // for loop for saving the positions of all 1s
    for (i = 0; i < n; i++) {
        if (arr[i] == 1) {
            pos[p] = i + 1;
            p++;
        }
    }
 
    // If array contains only 0s
    if (p == 0)
        return 0;
 
    int ways = 1;
    for (i = 0; i < p - 1; i++) {
        ways *= pos[i + 1] - pos[i];
    }
 
    // Return the total ways
    return ways;
}
 
// Driver code
int main()
{
    int arr[] = { 1, 0, 1, 0, 1 };
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << countWays(arr, n);
    return 0;
}


Java




// Java implementation of the approach
class GFG
{
     
// Function to return the number of ways
// the array can be divided into sub-arrays
// satisfying the given condition
static int countWays(int arr[], int n)
{
    int pos[] = new int[n];
    int p = 0, i;
 
    // for loop for saving the
    // positions of all 1s
    for (i = 0; i < n; i++)
    {
        if (arr[i] == 1)
        {
            pos[p] = i + 1;
            p++;
        }
    }
 
    // If array contains only 0s
    if (p == 0)
        return 0;
 
    int ways = 1;
    for (i = 0; i < p - 1; i++)
    {
        ways *= pos[i + 1] - pos[i];
    }
 
    // Return the total ways
    return ways;
}
 
// Driver code
public static void main(String args[])
{
    int[] arr = { 1, 0, 1, 0, 1 };
    int n = arr.length;
    System.out.println(countWays(arr, n));
}
}
 
// This code is contributed
// by Akanksha Rai


Python3




# Python 3 implementation of the approach
 
# Function to return the number of ways
# the array can be divided into sub-arrays
# satisfying the given condition
def countWays(are, n):
    pos = [0 for i in range(n)]
    p = 0
 
    # for loop for saving the positions
    # of all 1s
    for i in range(n):
        if (arr[i] == 1):
            pos[p] = i + 1
            p += 1
 
    # If array contains only 0s
    if (p == 0):
        return 0
 
    ways = 1
    for i in range(p - 1):
        ways *= pos[i + 1] - pos[i]
 
    # Return the total ways
    return ways
 
# Driver code
if __name__ == '__main__':
    arr = [1, 0, 1, 0, 1]
    n = len(arr)
    print(countWays(arr, n))
     
# This code is contributed by
# Surendra_Gangwar


C#




// C# implementation of the approach
using System;
 
class GFG
{
     
// Function to return the number of ways
// the array can be divided into sub-arrays
// satisfying the given condition
static int countWays(int[] arr, int n)
{
    int[] pos = new int[n];
    int p = 0, i;
 
    // for loop for saving the positions
    // of all 1s
    for (i = 0; i < n; i++)
    {
        if (arr[i] == 1)
        {
            pos[p] = i + 1;
            p++;
        }
    }
 
    // If array contains only 0s
    if (p == 0)
        return 0;
 
    int ways = 1;
    for (i = 0; i < p - 1; i++)
    {
        ways *= pos[i + 1] - pos[i];
    }
 
    // Return the total ways
    return ways;
}
 
// Driver code
public static void Main()
{
    int[] arr = { 1, 0, 1, 0, 1 };
    int n = arr.Length;
    Console.Write(countWays(arr, n));
}
}
 
// This code is contributed
// by Akanksha Rai


PHP




<?php
// PHP implementation of the approach
 
// Function to return the number of ways
// the array can be divided into sub-arrays
// satisfying the given condition
function countWays($arr, $n)
{
    $pos = array_fill(0, $n, 0);
    $p = 0 ;
 
    // for loop for saving the positions
    // of all 1s
    for ($i = 0; $i < $n; $i++)
    {
        if ($arr[$i] == 1)
        {
            $pos[$p] = $i + 1;
            $p++;
        }
    }
 
    // If array contains only 0s
    if ($p == 0)
        return 0;
 
    $ways = 1;
    for ($i = 0; $i < $p - 1; $i++)
    {
        $ways *= $pos[$i + 1] - $pos[$i];
    }
 
    // Return the total ways
    return $ways;
}
 
// Driver code
$arr = array(1, 0, 1, 0, 1);
$n = sizeof($arr);
echo countWays($arr, $n);
 
// This code is contributed by Ryuga
?>


Javascript




<script>
      // JavaScript implementation of the approach
      // Function to return the number of ways
      // the array can be divided into sub-arrays
      // satisfying the given condition
      function countWays(arr, n) {
        var pos = new Array(n).fill(0);
        var p = 0, i;
 
        // for loop for saving the positions
        // of all 1s
        for (i = 0; i < n; i++) {
          if (arr[i] === 1) {
            pos[p] = i + 1;
            p++;
          }
        }
 
        // If array contains only 0s
        if (p === 0)
            return 0;
 
        var ways = 1;
        for (i = 0; i < p - 1; i++) {
          ways *= pos[i + 1] - pos[i];
        }
 
        // Return the total ways
        return ways;
      }
 
      // Driver code
      var arr = [1, 0, 1, 0, 1];
      var n = arr.length;
      document.write(countWays(arr, n));
</script>


Output

4

Complexity Analysis:

  • Time Complexity: O(n), where n is the size of the given array
  • Auxiliary Space: O(n), as extra space of size n was used
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Dominic
32399 POSTS0 COMMENTS
Milvus
95 POSTS0 COMMENTS
Nango Kala
6765 POSTS0 COMMENTS
Nicole Veronica
11917 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11985 POSTS0 COMMENTS
Shaida Kate Naidoo
6890 POSTS0 COMMENTS
Ted Musemwa
7143 POSTS0 COMMENTS
Thapelo Manthata
6838 POSTS0 COMMENTS
Umr Jansen
6840 POSTS0 COMMENTS