Given an array A of size N (> 2). The task is to find the maximum value of A[i] / A[j]
Note: A[i] ? 0.
Examples:
Input : A[] = {1, 2, 3, 4}
Output : 4
4 / 1 = 4 is maximum possible value.Input : A[] = {3, 7, 9, 3, 11}
Output : 3
Naive Approach: A naive approach is to run nested loops and find the maximum possible answer.
Time complexity : O(N2).
Efficient Approach: An efficient approach is to find maximum and minimum element in the array and print maximum / minimum
Proof:
Lets take an array A[] = {a, b, c, d} where a < b < c < d .
Now :
(b / a) < ( c / a ) < (d / a) (since b < c < d, and denominator is constant )
and since a is minimum, therefore
d / a is maximum
Below is the implementation of the above approach:
C++
// CPP program to maximum value of // division of two numbers in an array #include <bits/stdc++.h> using namespace std; // Function to maximum value of // division of two numbers in an array int Division( int a[], int n) { int maxi = INT_MIN, mini = INT_MAX; // Traverse through the array for ( int i = 0; i < n; i++) { maxi = max(a[i], maxi); mini = min(a[i], mini); } // Return the required answer return maxi / mini; } // Driver code int main() { int a[] = {3, 7, 9, 3, 11}; int n = sizeof (a) / sizeof (a[0]); cout << Division(a, n); return 0; } |
Java
// Java program to maximum value of // division of two numbers in an array import java.util.*; import java.lang.*; import java.io.*; class GFG { // Function to maximum value of // division of two numbers in an array static int Division( int a[], int n) { int maxi = Integer.MIN_VALUE, mini = Integer.MAX_VALUE; // Traverse through the array for ( int i = 0 ; i < n; i++) { maxi = Math.max(a[i], maxi); mini = Math.min(a[i], mini); } // Return the required answer return maxi / mini; } // Driver code public static void main (String[] args) throws java.lang.Exception { int a[] = { 3 , 7 , 9 , 3 , 11 }; int n = a.length; System.out.print(Division(a, n)); } } // This code is contributed by Nidhiva |
Python3
# Python3 program to maximum value of # division of two numbers in an array # Function to maximum value of # division of two numbers in an array def Division(a, n): maxi = - 10 * * 9 mini = 10 * * 9 # Traverse through the array for i in a: maxi = max (i, maxi) mini = min (i, mini) # Return the required answer return maxi / / mini # Driver code a = [ 3 , 7 , 9 , 3 , 11 ] n = len (a) print (Division(a, n)) # This code is contributed by Mohit Kumar |
C#
// C# program to maximum value of // division of two numbers in an array using System; class GFG { // Function to maximum value of // division of two numbers in an array static int Division( int []a, int n) { int maxi = int .MinValue, mini = int .MaxValue; // Traverse through the array for ( int i = 0; i < n; i++) { maxi = Math.Max(a[i], maxi); mini = Math.Min(a[i], mini); } // Return the required answer return maxi / mini; } // Driver code public static void Main (String[] args) { int []a = {3, 7, 9, 3, 11}; int n = a.Length; Console.WriteLine(Division(a, n)); } } // This code is contributed by Rajput-Ji |
Javascript
<script> // Javascript program to maximum value of // division of two numbers in an array // Function to maximum value of // division of two numbers in an array function Division(a, n) { let maxi = Number.MIN_VALUE, mini = Number.MAX_VALUE; // Traverse through the array for (let i = 0; i < n; i++) { maxi = Math.max(a[i], maxi); mini = Math.min(a[i], mini); } // Return the required answer return parseInt(maxi / mini); } // Driver code let a = [3, 7, 9, 3, 11]; let n = a.length; document.write(Division(a, n)); </script> |
Output :
3
Time complexity : O(N), since the loop runs only once from 0 to (n – 1).
Auxiliary space : O(1), since no extra space has been taken.
Note: Above solution works only for positive integers
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!