Sunday, October 19, 2025
HomeData Modelling & AISmallest integer greater than n such that it consists of digit m...

Smallest integer greater than n such that it consists of digit m exactly k times

Given three integer n, m and k, the task is to find the smallest integer > n such that digit m appears exactly k times in it.
Examples: 
 

Input: n = 111, m = 2, k = 2 
Output: 122
Input: n = 111, m = 2, k = 3 
Output: 222 
 

 

Approach: Start iterating from n + 1 and for each integer i check whether it consists of digit m exactly k times. This way smallest integer > n with digit m occurring exactly k times can be found.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function that returns true if n contains
// digit m exactly k times
bool digitWell(int n, int m, int k)
{
    int cnt = 0;
    while (n > 0) {
        if (n % 10 == m)
            ++cnt;
        n /= 10;
    }
    return cnt == k;
}
 
// Function to return the smallest integer > n
// with digit m occurring exactly k times
int findInt(int n, int m, int k)
{
 
    int i = n + 1;
 
    while (true) {
        if (digitWell(i, m, k))
            return i;
        i++;
    }
}
 
// Driver code
int main()
{
    int n = 111, m = 2, k = 2;
    cout << findInt(n, m, k);
    return 0;
}


Java




// Java implementation of the approach
import java.io.*;
class GFG
{
     
// Function that returns true if n contains
// digit m exactly k times
static boolean digitWell(int n, int m, int k)
{
    int cnt = 0;
    while (n > 0)
    {
        if (n % 10 == m)
            ++cnt;
        n /= 10;
    }
    return cnt == k;
}
 
// Function to return the smallest integer > n
// with digit m occurring exactly k times
static int findInt(int n, int m, int k)
{
 
    int i = n + 1;
 
    while (true)
    {
        if (digitWell(i, m, k))
            return i;
        i++;
    }
}
 
// Driver code
public static void main(String[] args)
{
    int n = 111, m = 2, k = 2;
    System.out.println(findInt(n, m, k));
}
}
 
// This code is contributed by Code_Mech


Python3




# Python3 implementation of the approach
 
# Function that returns true if n
# contains digit m exactly k times
def digitWell(n, m, k):
 
    cnt = 0
    while (n > 0):
 
        if (n % 10 == m):
            cnt = cnt + 1;
        n = (int)(n / 10);
 
    return cnt == k;
 
# Function to return the smallest integer > n
# with digit m occurring exactly k times
def findInt(n, m, k):
 
    i = n + 1;
 
    while (True):
        if (digitWell(i, m, k)):
            return i;
        i = i + 1;
 
# Driver code
n = 111; m = 2; k = 2;
print(findInt(n, m, k));
 
# This code is contributed
# by Akanksha Rai


C#




// C# implementation of the approach
using System;
class GFG
{
     
// Function that returns true if n contains
// digit m exactly k times
static bool digitWell(int n, int m, int k)
{
    int cnt = 0;
    while (n > 0)
    {
        if (n % 10 == m)
            ++cnt;
        n /= 10;
    }
    return cnt == k;
}
 
// Function to return the smallest integer > n
// with digit m occurring exactly k times
static int findInt(int n, int m, int k)
{
 
    int i = n + 1;
 
    while (true)
    {
        if (digitWell(i, m, k))
            return i;
        i++;
    }
}
 
// Driver code
public static void Main()
{
    int n = 111, m = 2, k = 2;
    Console.WriteLine(findInt(n, m, k));
}
}
 
// This code is contributed
// by Akanksha Rai


PHP




<?php
// PHP implementation of the approach
 
// Function that returns true if n
// contains digit m exactly k times
function digitWell($n, $m, $k)
{
    $cnt = 0;
    while ($n > 0)
    {
        if ($n % 10 == $m)
            ++$cnt;
        $n = floor($n / 10);
    }
    return $cnt == $k;
}
 
// Function to return the smallest integer > n
// with digit m occurring exactly k times
function findInt($n, $m, $k)
{
    $i = $n + 1;
 
    while (true)
    {
        if (digitWell($i, $m, $k))
            return $i;
        $i++;
    }
}
 
// Driver code
$n = 111;
$m = 2;
$k = 2;
 
echo findInt($n, $m, $k);
 
// This code is contributed by Ryuga
?>


Javascript




<script>
 
// Javascript implementation of the approach
 
// Function that returns true if n contains
// digit m exactly k times
function digitWell(n, m, k)
{
    var cnt = 0;
    while (n > 0) {
        if (n % 10 == m)
            ++cnt;
        n = Math.floor(n/10);
    }
    if(cnt == k)
      return true;
    else
        return false;
}
 
// Function to return the smallest integer > n
// with digit m occurring exactly k times
function findInt(n, m, k)
{
 
    var i = n + 1;
 
    while (true) {
        if (digitWell(i, m, k))
            return i;
        i++;
    }
}
 
// Driver code
    var n = 111, m = 2, k = 2;
    document.write(findInt(n, m, k));
 
</script>


Output: 

122

 

Time Complexity: O(n * log10n)
Auxiliary Space: O(1), since no extra space has been taken.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Dominic
32361 POSTS0 COMMENTS
Milvus
88 POSTS0 COMMENTS
Nango Kala
6728 POSTS0 COMMENTS
Nicole Veronica
11892 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11954 POSTS0 COMMENTS
Shaida Kate Naidoo
6852 POSTS0 COMMENTS
Ted Musemwa
7113 POSTS0 COMMENTS
Thapelo Manthata
6805 POSTS0 COMMENTS
Umr Jansen
6801 POSTS0 COMMENTS