Given the number of sides n of a regular polygon. The task is to find out the Interior angle and Exterior angle of the polygon.
Examples:
Input : n = 6 Output : Interior angle: 120 Exterior angle: 60 Input : n = 10 Output: Interior angle: 144 Exterior angle: 36
Interior angle: The angle between two adjacent sides inside the polygon is known as the Interior angle.
Formula to find the Interior angle:
Interior Angle =
Exterior angle: The angle formed by any side of a polygon and the extension of its adjacent side is known as Exterior angle.
Exterior angle =
Program to find interior and exterior angles of a Regular Polygon:
C++
// CPP program to find the interior and // exterior angle of a given polygon #include <iostream> using namespace std; // function to find the interior and // exterior angle void findAngle( int n) { int interiorAngle, exteriorAngle; // formula to find the interior angle interiorAngle = (n - 2) * 180 / n; // formula to find the exterior angle exteriorAngle = 360 / n; // Displaying the output cout << "Interior angle: " << interiorAngle << endl; cout << "Exterior angle: " << exteriorAngle; } // Driver code int main() { int n = 10; // Function calling findAngle(n); return 0; } |
Java
// Java program to find the interior and // exterior angle of a given polygon import java.io.*; class GFG { // function to find the interior and // exterior angle static void findAngle( int n) { int interiorAngle, exteriorAngle; // formula to find the interior angle interiorAngle = (n - 2 ) * 180 / n; // formula to find the exterior angle exteriorAngle = 360 / n; // Displaying the output System.out.println( "Interior angle: " + interiorAngle); System.out.println( "Exterior angle: " + exteriorAngle); } // Driver code public static void main (String[] args) { int n = 10 ; // Function calling findAngle(n); } } |
Python3
# Python3 program to find # the interior and exterior # angle of a given polygon # function to find # the interior and # exterior angle def findAngle(n): # formula to find the # interior angle interiorAngle = int ((n - 2 ) * 180 / n) # formula to find # the exterior angle exteriorAngle = int ( 360 / n) # Displaying the output print ( "Interior angle: " , interiorAngle ) print ( "Exterior angle: " , exteriorAngle ) # Driver code n = 10 # Function calling findAngle(n) # This code is contributed # by Smitha |
C#
// C# program to find the // interior and exterior // angle of a given polygon using System; class GFG { // function to find // the interior and // exterior angle static void findAngle( int n) { int interiorAngle, exteriorAngle; // formula to find // the interior angle interiorAngle = (n - 2) * 180 / n; // formula to find // the exterior angle exteriorAngle = 360 / n; // Displaying the output Console.Write( "Interior angle: " + interiorAngle + "\n" ); Console.Write( "Exterior angle: " + exteriorAngle); } // Driver code public static void Main () { int n = 10; // Function calling findAngle(n); } } // This code is contributed // by Smitha |
PHP
<?php // PHP program to find the // interior and exterior // angle of a given polygon // function to find the // interior and exterior // angle function findAngle( $n ) { $interiorAngle ; $exteriorAngle ; // formula to find // the interior angle $interiorAngle = ( $n - 2) * 180 / $n ; // formula to find // the exterior angle $exteriorAngle = 360 / $n ; // Displaying the output echo "Interior angle: " , $interiorAngle , "\n" ; echo "Exterior angle: " , $exteriorAngle ; } // Driver code $n = 10; // Function calling findAngle( $n ); // This code is contributed // by inder_verma. ?> |
Javascript
<script> // JavaScript program to find the interior and // exterior angle of a given polygon // function to find the interior and // exterior angle function findAngle(n) { let interiorAngle, exteriorAngle; // formula to find the interior angle interiorAngle = Math.floor((n - 2) * 180 / n); // formula to find the exterior angle exteriorAngle = Math.floor(360 / n); // Displaying the output document.write( "Interior angle: " + interiorAngle + "<br>" ); document.write( "Exterior angle: " + exteriorAngle); } // Driver code let n = 10; // Function calling findAngle(n); // This code is contributed by Surbhi Tyagi. </script> |
Interior angle: 144 Exterior angle: 36
Time Complexity: O(1)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!
[…] Approach: For any N sided regular polygon, when rotated by 360 degrees, it aligns in the original position of the polygon. To find the minimum angle of rotation we use the property of symmetry of regular polygons. For an N sided regular polygon when rotated by 360/N degrees, the rotated polygon is in the same position as of the original polygon, which is the exterior angle of an N-sided regular polygon. […]