Given an array arr[] consisting of N integers and an integer K, the task is to find a subarray of size K with maximum sum and count of distinct elements same as that of the original array.
Examples:
Input: arr[] = {7, 7, 2, 4, 2, 7, 4, 6, 6, 6}, K = 6
Output: 31
Explanation: The given array consists of 4 distinct elements, i.e. {2, 4, 6, 7}. The subarray of size K consisting of all these elements and maximum sum is {2, 7, 4, 6, 6, 6} which starts from 5th index (1-based indexing) of the original array.
Therefore, the sum of the subarray = 2 + 7 + 4 + 6 + 6 + 6 = 31.Input: arr[] = {1, 2, 5, 5, 19, 2, 1}, K = 4
Output: 27
Naive Approach: The simple approach is to generate all possible subarrays of size K and check if it has the same distinct elements as the original array. If yes then find the sum of this subarray. After checking all the subarrays print the maximum sum of all such subarrays.
Below is the implementation of the above approach:
C++
// C++ program for the above approach#include <bits/stdc++.h>using namespace std;Â
// Function to count the number of// distinct elements present in the arrayint distinct(int arr[], int n){Â Â Â Â map<int,int> mpp;Â
    // Insert all elements into the Set    for (int i = 0; i < n; i++)     {        mpp[arr[i]] = 1;    }Â
    // Return the size of set    return mpp.size();}Â
// Function that finds the maximum// sum of K-length subarray having// same unique elements as arr[]int maxSubSum(int arr[], int n,int k, int totalDistinct){       // Not possible to find a    // subarray of size K    if (k > n)        return 0;    int maxm = 0, sum = 0;    for (int i = 0; i < n - k + 1; i++)     {        sum = 0;Â
        // Initialize Set        set<int> st;Â
        // Calculate sum of the distinct elements        for (int j = i; j < i + k; j++)         {            sum += arr[j];            st.insert(arr[j]);        }Â
        // If the set size is same as the        // count of distinct elements        if ((int) st.size() == totalDistinct)Â
            // Update the maximum value            maxm = max(sum, maxm);    }    return maxm;}Â
// Driver codeint main(){  int arr[] = { 7, 7, 2, 4, 2,                7, 4, 6, 6, 6 };  int K = 6;  int N = sizeof(arr)/sizeof(arr[0]);Â
  // Stores the count of distinct elements  int totalDistinct = distinct(arr, N);  cout << (maxSubSum(arr, N, K, totalDistinct));Â
  return 0;}Â
// This code is contributed by mohit kumar 29. |
Java
// Java program for the above approachimport java.util.*;Â
class GFG {Â
    // Function to count the number of    // distinct elements present in the array    static int distinct(int arr[], int n)    {        Set<Integer> set = new HashSet<>();Â
        // Insert all elements into the Set        for (int i = 0; i < n; i++) {            set.add(arr[i]);        }Â
        // Return the size of set        return set.size();    }Â
    // Function that finds the maximum    // sum of K-length subarray having    // same unique elements as arr[]    static int maxSubSum(int arr[], int n,                         int k,                         int totalDistinct)    {        // Not possible to find a        // subarray of size K        if (k > n)            return 0;Â
        int max = 0, sum = 0;Â
        for (int i = 0; i < n - k + 1; i++) {            sum = 0;Â
            // Initialize Set            Set<Integer> set = new HashSet<>();Â
            // Calculate sum of the distinct elements            for (int j = i; j < i + k; j++) {                sum += arr[j];                set.add(arr[j]);            }Â
            // If the set size is same as the            // count of distinct elements            if (set.size() == totalDistinct)Â
                // Update the maximum value                max = Math.max(sum, max);        }        return max;    }Â
    // Driver Code    public static void main(String args[])    {        int arr[] = { 7, 7, 2, 4, 2,                      7, 4, 6, 6, 6 };        int K = 6;        int N = arr.length;Â
        // Stores the count of distinct elements        int totalDistinct = distinct(arr, N);Â
        System.out.println(            maxSubSum(arr, N, K, totalDistinct));    }} |
Python3
# Python3 program for the above approachÂ
# Function to count the number of# distinct elements present in the arraydef distinct(arr, n):Â Â Â Â Â Â Â Â Â mpp = {}Â
    # Insert all elements into the Set    for i in range(n):        mpp[arr[i]] = 1Â
    # Return the size of set    return len(mpp)Â
# Function that finds the maximum# sum of K-length subarray having# same unique elements as arr[]def maxSubSum(arr, n, k, totalDistinct):         # Not possible to find a    # subarray of size K    if (k > n):        return 0             maxm = 0    sum = 0         for i in range(n - k + 1):        sum = 0Â
        # Initialize Set        st = set()Â
        # Calculate sum of the distinct elements        for j in range(i, i + k, 1):            sum += arr[j]            st.add(arr[j])Â
        # If the set size is same as the        # count of distinct elements        if (len(st) == totalDistinct):                         # Update the maximum value            maxm = max(sum, maxm)Â
    return maxmÂ
# Driver codeif __name__ == '__main__':Â Â Â Â Â Â Â Â Â arr = [ 7, 7, 2, 4, 2, 7, 4, 6, 6, 6 ]Â Â Â Â K = 6Â Â Â Â N = len(arr)Â
    # Stores the count of distinct elements    totalDistinct = distinct(arr, N)    print(maxSubSum(arr, N, K, totalDistinct))Â
# This code is contributed by ipg2016107 |
C#
// C# Program to implement// the above approachusing System;using System.Collections.Generic; Â
class GFG {Â
Â
  // Function to count the number of  // distinct elements present in the array  static int distinct(int[] arr, int n)  {    HashSet<int> set = new HashSet<int>();Â
    // Insert all elements into the Set    for (int i = 0; i < n; i++) {      set.Add(arr[i]);    }Â
    // Return the size of set    return set.Count;  }Â
  // Function that finds the maximum  // sum of K-length subarray having  // same unique elements as arr[]  static int maxSubSum(int[] arr, int n,                       int k,                       int totalDistinct)  {    // Not possible to find a    // subarray of size K    if (k > n)      return 0;Â
    int max = 0, sum = 0;Â
    for (int i = 0; i < n - k + 1; i++) {      sum = 0;Â
      // Initialize Set      HashSet<int> set = new HashSet<int>();Â
      // Calculate sum of the distinct elements      for (int j = i; j < i + k; j++) {        sum += arr[j];        set.Add(arr[j]);      }Â
      // If the set size is same as the      // count of distinct elements      if (set.Count == totalDistinct)Â
        // Update the maximum value        max = Math.Max(sum, max);    }    return max;  }Â
  // Driver Code  public static void Main(String[] args)   {    int[] arr = { 7, 7, 2, 4, 2,                 7, 4, 6, 6, 6 };    int K = 6;    int N = arr.Length;Â
    // Stores the count of distinct elements    int totalDistinct = distinct(arr, N);Â
    Console.WriteLine(      maxSubSum(arr, N, K, totalDistinct));  }}Â
// This code is contributed by code_hunt. |
Javascript
<script>Â
// Javascript program for the above approachÂ
// Function to count the number of// distinct elements present in the arrayfunction distinct(arr, n){Â Â Â Â var mpp = new Map();Â
    // Insert all elements into the Set    for (var i = 0; i < n; i++)     {        mpp.set(arr[i], 1);    }Â
    // Return the size of set    return mpp.size;}Â
// Function that finds the maximum// sum of K-length subarray having// same unique elements as arr[]function maxSubSum(arr, n,k, totalDistinct){       // Not possible to find a    // subarray of size K    if (k > n)        return 0;    var maxm = 0, sum = 0;    for (var i = 0; i < n - k + 1; i++)     {        sum = 0;Â
        // Initialize Set        var st = new Set();Â
        // Calculate sum of the distinct elements        for (var j = i; j < i + k; j++)         {            sum += arr[j];            st.add(arr[j]);        }Â
        // If the set size is same as the        // count of distinct elements        if ( st.size == totalDistinct)Â
            // Update the maximum value            maxm = Math.max(sum, maxm);    }    return maxm;}Â
// Driver codevar arr = [7, 7, 2, 4, 2,              7, 4, 6, 6, 6];var K = 6;var N = arr.length;Â
// Stores the count of distinct elementsvar totalDistinct = distinct(arr, N);document.write(maxSubSum(arr, N, K, totalDistinct));Â
// This code is contributed by itsok.</script> |
31
Â
Time Complexity: O(N2*log(N))
Auxiliary Space: O(N)
Efficient Approach: To optimize the above approach, the idea is to make use of Map. Follow the steps below to solve the problem:
- Traverse the array once and keep updating the frequency of array elements in the Map.
- Check if the size of the map is equal to the total number of distinct elements present in the original array or not. If found to be true, update the maximum sum.
- While traversing the original array, if the ith traversal crosses K elements in the array, update the Map by deleting an occurrence of (i – K)th element.
- After completing the above steps, print the maximum sum obtained.
Below is the implementation of the above approach:
C++
// C++ program for the above approach#include<bits/stdc++.h>using namespace std;Â
// Function to count the number of// distinct elements present in the arrayint distinct(vector<int>arr, int N){    set<int> st;         // Insert array elements into set    for(int i = 0; i < N; i++)    {        st.insert(arr[i]);    }Â
    // Return the st size    return st.size();}Â
// Function to calculate maximum// sum of K-length subarray having// same unique elements as arr[]int maxSubarraySumUtil(vector<int>arr, int N,                        int K, int totalDistinct){         // Not possible to find an    // subarray of length K from    // an N-sized array, if K > N    if (K > N)        return 0;Â
    int mx = 0;    int sum = 0;Â
    map<int, int> mp;Â
    // Traverse the array    for(int i = 0; i < N; i++)    {                 // Update the mp        mp[arr[i]] += 1;        sum += arr[i];Â
        // If i >= K, then decrement        // arr[i-K] element's one        // occurrence        if (i >= K)         {            mp[arr[i - K]] -= 1;            sum -= arr[i - K];Â
            // If frequency of any            // element is 0 then            // remove the element            if (mp[arr[i - K]] == 0)                mp.erase(arr[i - K]);        }Â
        // If mp size is same as the        // count of distinct elements        // of array arr[] then update        // maximum sum        if (mp.size() == totalDistinct)            mx = max(mx, sum);    }    return mx;}Â
// Function that finds the maximum// sum of K-length subarray having// same number of distinct elements// as the original arrayvoid maxSubarraySum(vector<int>arr,                           int K){    // Size of array    int N = arr.size();Â
    // Stores count of distinct elements    int totalDistinct = distinct(arr, N);Â
    // Print maximum subarray sum    cout<<maxSubarraySumUtil(arr, N, K, totalDistinct);}Â
// Driver Codeint main(){    vector<int>arr { 7, 7, 2, 4, 2,                     7, 4, 6, 6, 6 };    int K = 6;Â
    // Function Call    maxSubarraySum(arr, K);}Â
// This code is contributed by ipg2016107 |
Java
// Java program for the above approachÂ
import java.util.*;class GFG {Â
    // Function to count the number of    // distinct elements present in the array    static int distinct(int arr[], int N)    {        Set<Integer> set = new HashSet<>();Â
        // Insert array elements into Set        for (int i = 0; i < N; i++) {            set.add(arr[i]);        }Â
        // Return the Set size        return set.size();    }Â
    // Function to calculate maximum    // sum of K-length subarray having    // same unique elements as arr[]    static int maxSubarraySumUtil(        int arr[], int N, int K,        int totalDistinct)    {        // Not possible to find an        // subarray of length K from        // an N-sized array, if K > N        if (K > N)            return 0;Â
        int max = 0;        int sum = 0;Â
        Map<Integer, Integer> map            = new HashMap<>();Â
        // Traverse the array        for (int i = 0; i < N; i++) {Â
            // Update the map            map.put(arr[i],                    map.getOrDefault(arr[i], 0) + 1);            sum += arr[i];Â
            // If i >= K, then decrement            // arr[i-K] element's one            // occurrence            if (i >= K) {                map.put(arr[i - K],                        map.get(arr[i - K]) - 1);                sum -= arr[i - K];Â
                // If frequency of any                // element is 0 then                // remove the element                if (map.get(arr[i - K]) == 0)                    map.remove(arr[i - K]);            }Â
            // If map size is same as the            // count of distinct elements            // of array arr[] then update            // maximum sum            if (map.size() == totalDistinct)                max = Math.max(max, sum);        }        return max;    }Â
    // Function that finds the maximum    // sum of K-length subarray having    // same number of distinct elements    // as the original array    static void maxSubarraySum(int arr[],                               int K)    {        // Size of array        int N = arr.length;Â
        // Stores count of distinct elements        int totalDistinct = distinct(arr, N);Â
        // Print maximum subarray sum        System.out.println(            maxSubarraySumUtil(arr, N, K,                               totalDistinct));    }Â
    // Driver Code    public static void main(String args[])    {        int arr[] = { 7, 7, 2, 4, 2,                      7, 4, 6, 6, 6 };        int K = 6;Â
        // Function Call        maxSubarraySum(arr, K);    }} |
Python3
# Python 3 program for the above approachÂ
# Function to count the number of# distinct elements present in the arraydef distinct(arr, N):    st = set()         # Insert array elements into set    for i in range(N):        st.add(arr[i])Â
    # Return the st size    return len(st)Â
# Function to calculate maximum# sum of K-length subarray having# same unique elements as arr[]def maxSubarraySumUtil(arr, N, K, totalDistinct):    # Not possible to find an    # subarray of length K from    # an N-sized array, if K > N    if (K > N):        return 0Â
    mx = 0    sum = 0Â
    mp = {}Â
    # Traverse the array    for i in range(N):        # Update the mp        if(arr[i] in mp):            mp[arr[i]] += 1        else:            mp[arr[i]] = 1        sum += arr[i]Â
        # If i >= K, then decrement        # arr[i-K] element's one        # occurrence        if (i >= K):            if(arr[i-K] in mp):                mp[arr[i - K]] -= 1                sum -= arr[i - K]Â
            # If frequency of any            # element is 0 then            # remove the element            if (arr[i-K] in mp and mp[arr[i - K]] == 0):                mp.remove(arr[i - K])Â
        # If mp size is same as the        # count of distinct elements        # of array arr[] then update        # maximum sum        if (len(mp) == totalDistinct):            mx = max(mx, sum)    return mxÂ
# Function that finds the maximum# sum of K-length subarray having# same number of distinct elements# as the original arraydef maxSubarraySum(arr, K):       # Size of array    N = len(arr)Â
    # Stores count of distinct elements    totalDistinct = distinct(arr, N)Â
    # Print maximum subarray sum    print(maxSubarraySumUtil(arr, N, K, totalDistinct))Â
# Driver Codeif __name__ == '__main__':    arr = [7, 7, 2, 4, 2,7, 4, 6, 6, 6]    K = 6Â
    # Function Call    maxSubarraySum(arr, K)Â
    # This code is contributed by SURENDRA_GANGWAR. |
C#
// C# program for the above approachusing System;using System.Collections.Generic;Â
class GFG{  // Function to count the number of// distinct elements present in the arraystatic int distinct(List<int>arr, int N){    HashSet<int> st = new HashSet<int>();         // Insert array elements into set    for(int i = 0; i < N; i++)    {        st.Add(arr[i]);    }Â
    // Return the st size    return st.Count;}Â
// Function to calculate maximum// sum of K-length subarray having// same unique elements as arr[]static int maxSubarraySumUtil(List<int>arr, int N,                        int K, int totalDistinct){         // Not possible to find an    // subarray of length K from    // an N-sized array, if K > N    if (K > N)        return 0;    int mx = 0;    int sum = 0;     Dictionary<int,int> mp = new Dictionary<int,int>();Â
    // Traverse the array    for(int i = 0; i < N; i++)    {                 // Update the mp        if(mp.ContainsKey(arr[i]))            mp[arr[i]] += 1;        else            mp[arr[i]] = 1;        sum += arr[i];Â
        // If i >= K, then decrement        // arr[i-K] element's one        // occurrence        if (i >= K)         {           if(mp.ContainsKey(arr[i - K]))               mp[arr[i - K]] -= 1;           else              mp[arr[i - K]] = 1;            sum -= arr[i - K];Â
            // If frequency of any            // element is 0 then            // remove the element            if (mp[arr[i - K]] == 0)                mp.Remove(arr[i - K]);        }Â
        // If mp size is same as the        // count of distinct elements        // of array arr[] then update        // maximum sum        if (mp.Count == totalDistinct)            mx = Math.Max(mx, sum);    }    return mx;}Â
// Function that finds the maximum// sum of K-length subarray having// same number of distinct elements// as the original arraystatic void maxSubarraySum(List<int>arr,                           int K){       // Size of array    int N = arr.Count;Â
    // Stores count of distinct elements    int totalDistinct = distinct(arr, N);Â
    // Print maximum subarray sum    Console.WriteLine(maxSubarraySumUtil(arr, N, K, totalDistinct));}Â
// Driver Codepublic static void Main(){    List<int>arr = new List<int>{ 7, 7, 2, 4, 2,                     7, 4, 6, 6, 6 };    int K = 6;Â
    // Function Call    maxSubarraySum(arr, K);}}Â
// This code is contributed by bgangwar59. |
Javascript
<script>Â
// JavaScript program for the above approachÂ
// Function to count the number of// distinct elements present in the arrayfunction distinct(arr, N){    var st = new Set();         // Insert array elements into set    for(var i = 0; i < N; i++)    {        st.add(arr[i]);    }Â
    // Return the st size    return st.size;}Â
// Function to calculate maximum// sum of K-length subarray having// same unique elements as arr[]function maxSubarraySumUtil(arr, N, K, totalDistinct){         // Not possible to find an    // subarray of length K from    // an N-sized array, if K > N    if (K > N)        return 0;     Â
    var mx = 0;    var sum = 0;Â
    var mp = new Map();         // Traverse the array    for(var i=0; i<N; i++)     {                 // Update the mp        if(mp.has(arr[i]))            mp.set(arr[i], mp.get(arr[i])+1)        else               mp.set(arr[i], 1)Â
        sum += arr[i];                 // If i >= K, then decrement        // arr[i-K] element's one        // occurrence        if (i >= K)         {            if(mp.has(arr[i-K]))                mp.set(arr[i-K], mp.get(arr[i-K])-1)                         sum -= arr[i - K];Â
            // If frequency of any            // element is 0 then            // remove the element            if (mp.has(arr[i - K]) && mp.get(arr[i - K])== 0)                mp.delete(arr[i - K]);        }                 // If mp size is same as the        // count of distinct elements        // of array arr[] then update        // maximum sum        if (mp.size == totalDistinct)            mx = Math.max(mx, sum);    }    return mx;}Â
// Function that finds the maximum// sum of K-length subarray having// same number of distinct elements// as the original arrayfunction maxSubarraySum(arr, K){    // Size of array    var N = arr.length;Â
    // Stores count of distinct elements    var totalDistinct = distinct(arr, N);Â
    // Print maximum subarray sum    document.write( maxSubarraySumUtil(arr, N, K, totalDistinct));}Â
// Driver CodeÂ
var arr = [7, 7, 2, 4, 2,           7, 4, 6, 6, 6 ];var K = 6;Â
// Function CallmaxSubarraySum(arr, K);Â
Â
</script> |
31
Â
Time Complexity: O(N*log (N))
Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!
