Sunday, October 12, 2025
HomeData Modelling & AIXOR of all subarray XORs | Set 2

XOR of all subarray XORs | Set 2

Given an array of integers, we need to get total XOR of all subarray XORs where subarray XOR can be obtained by XORing all elements of it.

Examples : 

Input : arr[] = [3, 5, 2, 4, 6]
Output : 7
Total XOR of all subarray XORs is,
(3) ^ (5) ^ (2) ^ (4) ^ (6)
(3^5) ^ (5^2) ^ (2^4) ^ (4^6)
(3^5^2) ^ (5^2^4) ^ (2^4^6)
(3^5^2^4) ^ (5^2^4^6) ^
(3^5^2^4^6) = 7     

Input : arr[] = {1, 2, 3, 4}
Output : 0
Total XOR of all subarray XORs is,
(1) ^ (2) ^ (3) ^ (4) ^
(1^2) ^ (2^3) ^ (3^4) ^ 
(1^2^3) ^ (2^3^4) ^
(1^2^3^4) = 0

We have discussed a O(n) solution in below post.
XOR of all subarray XORs | Set 1
As discussed in above post, frequency of element at i-th index is given by (i+1)*(N-i), where N is the size of the array

There are 4 cases possible:

  • Case 1: i is odd, N is odd 
    • Let i = 2k+1, N = 2m+1 
      freq[i] = ((2k+1)+1)*((2m+1)-(2k+1)) = 4(m-k)(k+1) = even
  • Case 2: i is odd, N is even 
    • Let i = 2k+1, N = 2m 
      freq[i] = ((2k+1)+1)*((2m)-(2k+1)) = 2(k+1)(2m-2k-1) = even
  • Case 3: i is even, N is odd 
    • Let i = 2k, N = 2m+1 
      freq[i] = ((2k)+1)*((2m+1)-(2k)) = 2k(2m-2k+1)+(2m-2k)+1 = odd
  • Case 4: i is even, N is even 
    • Let i = 2k, N = 2m 
      freq[i] = ((2k)+1)*((2m)-(2k)) = 2(m-k)(2k+1) = even

From this, we can conclude that if total no.of elements in the array is even, then frequency of element at any position is even. So total XOR will be 0. And if total no. of elements are odd, then frequency of elements at even positions are odd and frequency of elements at odd positions are even. So we need to find only the XOR of elements at even positions. 

Below is the implementation of the above idea :  

C++




// C++ program to get total xor of all subarray xors
#include <bits/stdc++.h>
using namespace std;
 
// Returns XOR of all subarray xors
int getTotalXorOfSubarrayXors(int arr[], int N)
{
    // if even number of terms are there, all
    // numbers will appear even number of times.
    // So result is 0.
    if (N % 2 == 0)
       return 0;
 
    // else initialize result by 0 as (a xor 0 = a)
    int res = 0;
    for (int i = 0; i<N; i+=2)
        res ^= arr[i];
 
    return res;
}
 
// Driver code to test above methods
int main()
{
    int arr[] = {3, 5, 2, 4, 6};
    int N = sizeof(arr) / sizeof(arr[0]);
    cout << getTotalXorOfSubarrayXors(arr, N);
    return 0;
}


Java




// Java program to get total
// xor of all subarray xors
import java.io.*;
 
class GFG
{
    // Returns XOR of all
    // subarray xors
    static int getTotalXorOfSubarrayXors(int arr[],
                                         int N)
    {
         
    // if even number of terms are
    // there, all numbers will appear
    // even number of times. So result is 0.
    if (N % 2 == 0)
    return 0;
 
    // else initialize result
    // by 0 as (a xor 0 = a)
    int res = 0;
    for (int i = 0; i < N; i += 2)
        res ^= arr[i];
 
    return res;
    }
     
    // Driver Code
    public static void main (String[] args)
    {
    int arr[] = {3, 5, 2, 4, 6};
    int N = arr.length;
         
    System.out.println(
            getTotalXorOfSubarrayXors(arr, N));
    }
}
 
// This code is contributed by ajit


Python3




# Python 3 program to get total xor
# of all subarray xors
 
# Returns XOR of all subarray xors
def getTotalXorOfSubarrayXors(arr, N):
 
    # if even number of terms are there,
    # all numbers will appear even number
    # of times. So result is 0.
    if (N % 2 == 0):
        return 0
 
    # else initialize result by 0
    # as (a xor 0 = a)
    res = 0
    for i in range(0, N, 2):
        res ^= arr[i]
 
    return res
 
# Driver code
if __name__ == "__main__":
 
    arr = [3, 5, 2, 4, 6]
    N = len(arr)
    print(getTotalXorOfSubarrayXors(arr, N))
 
# This code is contributed by ita_c


C#




// C# program to get total
// xor of all subarray xors
using System;
 
class GFG
{
     
    // Returns XOR of all
    // subarray xors
    static int getTotalXorOfSubarrayXors(int []arr,
                                         int N)
    {
         
    // if even number of terms
    // are there, all numbers
    // will appear even number
    // of times. So result is 0.
    if (N % 2 == 0)
    return 0;
 
    // else initialize result
    // by 0 as (a xor 0 = a)
    int res = 0;
    for (int i = 0; i < N; i += 2)
        res ^= arr[i];
 
    return res;
    }
     
    // Driver Code
    static void Main()
    {
    int []arr = {3, 5, 2, 4, 6};
    int N = arr.Length;
    Console.Write(getTotalXorOfSubarrayXors(arr, N));
}
}
 
// This code is contributed by aj_36


PHP




<?php
// PHP program to get total
// xor of all subarray xors
 
// Returns XOR of all subarray xors
function getTotalXorOfSubarrayXors($arr, $N)
{
     
    // if even number of terms
    // are there, all numbers
    // will appear even number
    // of times. So result is 0.
    if ($N % 2 == 0)
    return 0;
 
    // else initialize result
    // by 0 as (a xor 0 = a)
    $res = 0;
    for ($i = 0; $i < $N; $i += 2)
        $res ^= $arr[$i];
 
    return $res;
}
 
    // Driver Code
    $arr = array(3, 5, 2, 4, 6);
    $N = count($arr);
    echo getTotalXorOfSubarrayXors($arr, $N);
     
// This code is contributed by anuj_67.
?>


Javascript




<script>
 
// Javascript program to get total
// xor of all subarray xors    
 
    // Returns XOR of all
    // subarray xors
    function getTotalXorOfSubarrayXors(arr,N)
    {
        // if even number of terms are 
        // there, all numbers will appear
        // even number of times. So result is 0.
        if (N % 2 == 0)
            return 0;
         
        // else initialize result
        // by 0 as (a xor 0 = a)
        let  res = 0;
        for (let i = 0; i < N; i += 2)
        {
            res ^= arr[i];
        }
        return res;
    }
     
    // Driver Code
    let arr=[3, 5, 2, 4, 6];
    let N = arr.length;
    document.write(getTotalXorOfSubarrayXors(arr, N));
     
     
    // This code is contributed by avanitrachhadiya2155
     
</script>


Output

7

Time Complexity: O(n), where n is the length of the given array
Auxiliary Space: O(1)

This article is contributed by Rishabh Raj Jha. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32352 POSTS0 COMMENTS
Milvus
87 POSTS0 COMMENTS
Nango Kala
6720 POSTS0 COMMENTS
Nicole Veronica
11885 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11941 POSTS0 COMMENTS
Shaida Kate Naidoo
6840 POSTS0 COMMENTS
Ted Musemwa
7105 POSTS0 COMMENTS
Thapelo Manthata
6795 POSTS0 COMMENTS
Umr Jansen
6795 POSTS0 COMMENTS