Friday, November 14, 2025
HomeData Modelling & AISum of all perfect numbers present in an array

Sum of all perfect numbers present in an array

Given an array arr[] containing N positive integer. The task is to find the sum of all the perfect numbers from the array. 
A number is perfect if it is equal to the sum of its proper divisors i.e. the sum of its positive divisors excluding the number itself.

Examples:

Input: arr[] = {3, 6, 9} 
Output: 6
Proper divisor sum of 3 = 1 
Proper divisor sum of 6 = 1 + 2 + 3 = 6 
Proper divisor sum of 9 = 1 + 3 = 4
Input: arr[] = {17, 6, 10, 6, 4} 
Output: 12 

Approach: Initialize sum = 0 and for every element of the array, find the sum of its proper divisors say sumFactors. If arr[i] = sumFactors then update the resultant sum as sum = sum + arr[i]. Print the sum in the end.

Below is the implementation of the above approach: 

C++




// C++ implementation of the above approach
#include <iostream>
using namespace std;
 
// Function to return the sum of
// all the proper factors of n
int sumOfFactors(int n)
{
    int sum = 0;
    for (int f = 1; f <= n / 2; f++)
    {
 
        // f is the factor of n
        if (n % f == 0)
        {
            sum += f;
        }
    }
    return sum;
}
 
// Function to return the required sum
int getSum(int arr[], int n)
{
 
    // To store the sum
    int sum = 0;
    for (int i = 0; i < n; i++)
    {
 
        // If current element is non-zero and equal
        // to the sum of proper factors of itself
        if (arr[i] > 0 &&
            arr[i] == sumOfFactors(arr[i]))
        {
            sum += arr[i];
        }
    }
    return sum;
}
 
// Driver code
int main()
{
    int arr[10] = { 17, 6, 10, 6, 4 };
     
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << (getSum(arr, n));
    return 0;
}


Java




// Java implementation of the above approach
class GFG {
 
    // Function to return the sum of
    // all the proper factors of n
    static int sumOfFactors(int n)
    {
        int sum = 0;
        for (int f = 1; f <= n / 2; f++) {
 
            // f is the factor of n
            if (n % f == 0) {
                sum += f;
            }
        }
        return sum;
    }
 
    // Function to return the required sum
    static int getSum(int[] arr, int n)
    {
 
        // To store the sum
        int sum = 0;
        for (int i = 0; i < n; i++) {
 
            // If current element is non-zero and equal
            // to the sum of proper factors of itself
            if (arr[i] > 0 && arr[i] == sumOfFactors(arr[i])) {
                sum += arr[i];
            }
        }
        return sum;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int[] arr = { 17, 6, 10, 6, 4 };
        int n = arr.length;
        System.out.print(getSum(arr, n));
    }
}


Python3




# Python3 implementation of the above approach
 
# Function to return the sum of
# all the proper factors of n
def sumOfFactors(n):
 
    sum = 0
    for f in range(1, n // 2 + 1):
 
        # f is the factor of n
        if (n % f == 0):
            sum += f
         
    return sum
 
# Function to return the required sum
def getSum(arr, n):
     
    # To store the sum
    sum = 0
    for i in range(n):
 
        # If current element is non-zero and equal
        # to the sum of proper factors of itself
        if (arr[i] > 0 and
            arr[i] == sumOfFactors(arr[i])) :
            sum += arr[i]
     
    return sum
 
# Driver code
arr = [17, 6, 10, 6, 4]
 
n = len(arr)
print(getSum(arr, n))
 
# This code is contributed by Mohit Kumar


C#




// C# implementation of the above approach
using System;
 
class GFG
{
     
    // Function to return the sum of
    // all the proper factors of n
    static int sumOfFactors(int n)
    {
        int sum = 0;
        for (int f = 1; f <= n / 2; f++)
        {
 
            // f is the factor of n
            if (n % f == 0)
            {
                sum += f;
            }
        }
        return sum;
    }
 
    // Function to return the required sum
    static int getSum(int[] arr, int n)
    {
 
        // To store the sum
        int sum = 0;
        for (int i = 0; i < n; i++)
        {
 
            // If current element is non-zero and equal
            // to the sum of proper factors of itself
            if (arr[i] > 0 && arr[i] == sumOfFactors(arr[i]))
            {
                sum += arr[i];
            }
        }
        return sum;
    }
 
    // Driver code
    static public void Main ()
    {
        int[] arr = { 17, 6, 10, 6, 4 };
        int n = arr.Length;
        Console.WriteLine(getSum(arr, n));
    }
}
 
// This code is contributed by @ajit_0023


Javascript




<script>
// Java  script implementation of the above approach
 
    // Function to return the sum of
    // all the proper factors of n
    function sumOfFactors( n)
    {
        let sum = 0;
        for (let f = 1; f <= n / 2; f++) {
 
            // f is the factor of n
            if (n % f == 0) {
                sum += f;
            }
        }
        return sum;
    }
 
    // Function to return the required sum
    function getSum( arr,  n)
    {
 
        // To store the sum
        let sum = 0;
        for (let i = 0; i < n; i++) {
 
            // If current element is non-zero and equal
            // to the sum of proper factors of itself
            if (arr[i] > 0 && arr[i] == sumOfFactors(arr[i])) {
                sum += arr[i];
            }
        }
        return sum;
    }
 
    // Driver code
        let arr = [ 17, 6, 10, 6, 4 ];
        let  n = arr.length;
        document.write(getSum(arr, n));
     
//contributed by bobby
 
</script>


Output: 

12

 

Time Complexity: O(n * max(arr)), where max(arr) is the largest element of the array arr.

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Dominic
32399 POSTS0 COMMENTS
Milvus
95 POSTS0 COMMENTS
Nango Kala
6765 POSTS0 COMMENTS
Nicole Veronica
11917 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11984 POSTS0 COMMENTS
Shaida Kate Naidoo
6889 POSTS0 COMMENTS
Ted Musemwa
7142 POSTS0 COMMENTS
Thapelo Manthata
6837 POSTS0 COMMENTS
Umr Jansen
6840 POSTS0 COMMENTS