Given an N-ary Tree. The task is to print the level order traversal of the tree where each level will be in a new line.
Examples:
Input:
![]()
Image
Output:
1
3 2 4
5 6
Explanation: At level 1: only 1 is present.
At level 2: 3, 2, 4 is present
At level 3: 5, 6 is presentInput:
![]()
Image
Output:
1
2 3 4 5
6 7 8 9 10
11 12 13
14
Explanation: For the above example there are 5 level present in the n-ary tree.
At level 1: only 1 is present.
At level 2: 2, 3, 4, 5 is present.
At level 3: 6, 7, 8, 9, 10 is present
At level 4:11, 12, 13 is present
At level 5 :- 14 is present
Approach 1: Using BFS
The approach of the problem is to use Level Order Traversal and store all the levels in a 2D array where each of the levels is stored in a different row.
Follow the below steps to implement the approach:
- Create a vector ans and temp to store the level order traversal of the N-ary tree.
- Push the root node in the queue.
- Run a while loop until the queue is not empty:
- Determine the size of the current level which is the size of the queue (say N):
- Run a loop for i = 1 to N
- In each step delete the front node (say cur) and push its data to the temp as a part of the current level.
- Push all the children of cur into the queue.
- Push the temp into the final ans vector which stores the different levels in different rows.
- Determine the size of the current level which is the size of the queue (say N):
- Return the ans vector.
Below is the implementation of the above approach:
C++
// C++ code for above implementation#include <bits/stdc++.h>using namespace std;struct Node { char val; vector<Node*> children;};// Utility function to create a new tree nodeNode* newNode(int key){ Node* temp = new Node; temp->val = key; return temp;}// Function for level order traversal for n-array treevector<vector<int> > levelOrder(Node* root){ vector<vector<int> > ans; if (!root) cout << "N-Ary tree does not any nodes"; // Create a queue namely main_queue queue<Node*> main_queue; // Push the root value in the main_queue main_queue.push(root); // Create a temp vector to store the all the node values // present at a particular level vector<int> temp; // Run a while loop until the main_queue is empty while (!main_queue.empty()) { // Get the front of the main_queue int n = main_queue.size(); // Iterate through the current level for (int i = 0; i < n; i++) { Node* cur = main_queue.front(); main_queue.pop(); temp.push_back(cur->val); for (auto u : cur->children) main_queue.push(u); } ans.push_back(temp); temp.clear(); } return ans;}// Driver codeint main(){ Node* root = newNode(1); root->children.push_back(newNode(3)); root->children.push_back(newNode(2)); root->children.push_back(newNode(4)); root->children[0]->children.push_back(newNode(5)); root->children[0]->children.push_back(newNode(6)); // LevelOrderTraversal obj; vector<vector<int> > ans = levelOrder(root); for (auto v : ans) { for (int x : v) cout << x << " "; cout << endl; } return 0;}// This code is contributed by Aditya Kumar (adityakumar129) |
Java
import java.util.*;public class Main { static class Node { public int val; public Vector<Node> children; public Node(int key) { val = key; children = new Vector<Node>(); } } // Utility function to create a new tree node static Node newNode(int key) { Node temp = new Node(key); return temp; } // Function for level order traversal for n-array tree static List<List<Integer> > levelOrder(Node root) { List<List<Integer> > ans = new ArrayList<>(); if (root == null) System.out.println( "N-Ary tree does not any nodes"); // Create one queue main_queue Queue<Node> main_queue = new LinkedList<>(); // Push the root value in the main_queue main_queue.offer(root); // Traverse the N-ary Tree by level while (!main_queue.isEmpty()) { // Create a temp vector to store the all the // node values present at a particular level List<Integer> temp = new ArrayList<>(); int size = main_queue.size(); // Iterate through the current level for (int i = 0; i < size; i++) { Node node = main_queue.poll(); temp.add(node.val); for (Node child : node.children) { main_queue.offer(child); } } ans.add(temp); } return ans; } // Utility function to print the level order traversal public static void printList(List<List<Integer> > temp) { for (List<Integer> it : temp) { for (Integer et : it) System.out.print(et + " "); System.out.println(); } } public static void main(String[] args) { Node root = newNode(1); (root.children).add(newNode(3)); (root.children).add(newNode(2)); (root.children).add(newNode(4)); (root.children.get(0).children).add(newNode(5)); (root.children.get(0).children).add(newNode(6)); List<List<Integer> > ans = levelOrder(root); printList(ans); }}// This code is contributed by Sania Kumari Gupta |
Python3
# Python code for above implementationclass Node: def __init__(self, key): self.key = key self.child = [] # Utility function to create a new tree nodedef newNode(key): temp = Node(key) return temp # Prints the n-ary tree level wisedef LevelOrderTraversal(root): if (root == None): return; # Standard level order traversal code # using queue q = [] # Create a queue q.append(root); # Enqueue root while (len(q) != 0): n = len(q); # If this node has children while (n > 0): # Dequeue an item from queue and print it p = q[0] q.pop(0); print(p.key, end=' ') # Enqueue all children of the dequeued item for i in range(len(p.child)): q.append(p.child[i]); n -= 1 print() # Print new line between two levelsif __name__ == '__main__': root = newNode(1); root.child.append(newNode(3)); root.child.append(newNode(2)); root.child.append(newNode(4)); root.child[0].child.append(newNode(5)); root.child[0].child.append(newNode(6)); # LevelOrderTraversal obj; LevelOrderTraversal(root); # This code is contributed by poojaagarwal2. |
C#
// C# code implementation for the abvoe approachusing System;using System.Collections.Generic;using System.Linq;public class Node { public int val; public List<Node> children; public Node(int key) { val = key; children = new List<Node>(); }}public class GFG { // Utility function to create a new tree node static Node newNode(int key) { Node temp = new Node(key); return temp; } // Function for level order traversal for n-array tree static List<List<int> > levelOrder(Node root) { List<List<int> > ans = new List<List<int> >(); if (root == null) Console.WriteLine( "N-Ary tree does not any nodes"); // Create one queue main_queue Queue<Node> main_queue = new Queue<Node>(); // Push the root value in the main_queue main_queue.Enqueue(root); // Traverse the N-ary Tree by level while (main_queue.Any()) { // Create a temp vector to store the all the // node values present at a particular level List<int> temp = new List<int>(); int size = main_queue.Count; // Iterate through the current level for (int i = 0; i < size; i++) { Node node = main_queue.Dequeue(); temp.Add(node.val); foreach(Node child in node.children) { main_queue.Enqueue(child); } } ans.Add(temp); } return ans; } // Utility function to print the level order traversal public static void printList(List<List<int> > temp) { foreach(List<int> it in temp) { foreach(int et in it) Console.Write(et + " "); Console.WriteLine(); } } static public void Main() { // Code Node root = newNode(1); (root.children).Add(newNode(3)); (root.children).Add(newNode(2)); (root.children).Add(newNode(4)); (root.children[0].children).Add(newNode(5)); (root.children[0].children).Add(newNode(6)); List<List<int> > ans = levelOrder(root); printList(ans); }}// This code is contributed by karthik. |
Javascript
// Javascript code for above implementationclass Node { constructor(val) { this.val = val; this.children = new Array(); }}// Function for level order traversal for n-array treefunction levelOrder( root){ let ans = []; if (!root) console.log("N-Ary tree does not any nodes"); // Create a queue namely main_queue let main_queue=[]; // Push the root value in the main_queue main_queue.push(root); // Create a temp vector to store the all the node values // present at a particular level let temp=[]; // Run a while loop until the main_queue is empty while (main_queue.length) { // Get the front of the main_queue let n = main_queue.length; // Iterate through the current level for (let i = 0; i < n; i++) { let cur = main_queue.shift(); temp.push(cur.val); for (let u of cur.children) main_queue.push(u); } ans.push(temp); temp=[]; } return ans;}// Driver codelet root = new Node(1);root.children.push(new Node(3));root.children.push(new Node(2));root.children.push(new Node(4));root.children[0].children.push(new Node(5));root.children[0].children.push(new Node(6));// LevelOrderTraversal obj;let ans = levelOrder(root);for (let v of ans) { for (let x of v) console.log(x+" "); console.log("<br>");} |
1 3 2 4 5 6
Time Complexity: O(V) where V is the number of nodes
Auxiliary Space: O(V)
Approach 2: Using DFS
The approach of the problem is to use Level Order Traversal using DFS and store all the levels in a 2D array where each of the levels is stored in a different row.
- LevelOrder function will update ans with the current value, pushing it in with a new sub-vector if one matching the level is not present already into ans.
- Function will increase level by 1;
- It will call itself recursively on all the children;
- It will backtrack level.
Below is the implementation of the above approach:
C++
// C++ code for above implementation#include <bits/stdc++.h>using namespace std;vector<vector<int> > ans;int level = 0;struct Node { char val; vector<Node*> children;};Node* newNode(int key){ Node* temp = new Node; temp->val = key; return temp;}void levelOrder(Node *root) { if (ans.size() == level) ans.push_back({root->val}); else ans[level].push_back(root->val); level++; for (Node *n: root->children) levelOrder(n); level--; }int main(){ Node* root = newNode(1); root->children.push_back(newNode(3)); root->children.push_back(newNode(2)); root->children.push_back(newNode(4)); root->children[0]->children.push_back(newNode(5)); root->children[0]->children.push_back(newNode(6)); // LevelOrderTraversal obj; levelOrder(root); for (auto v : ans) { for (int x : v) cout << x << " "; cout << endl; } return 0;} |
Java
/*package whatever //do not write package name here */import java.io.*;import java.util.*;public class GFG { static List<List<Integer> > result = new ArrayList<>(); static int level = 0; static class Node { public int val; public Vector<Node> children; public Node(int key) { val = key; children = new Vector<Node>(); } } // Utility function to create a new tree node static Node newNode(int key) { Node temp = new Node(key); return temp; } // method to find level order traversal of n-ary tree static void levelOrder(Node node) { if (node == null) { return; } List<Integer> list = result.size() > level ? result.get(level) : new ArrayList<>(); // adding node value to the list list.add(node.val); if (result.size() <= level) { result.add(list); } // promoting/incrementing the level to next level++; for (Node n : node.children) { levelOrder(n); } level--; } // utility function to print level order traversal public static void printList(List<List<Integer> > temp) { for (List<Integer> it : temp) { for (Integer et : it) System.out.print(et + " "); System.out.println(); } } public static void main(String[] args) { Node root = newNode(1); (root.children).add(newNode(3)); (root.children).add(newNode(2)); (root.children).add(newNode(4)); (root.children.get(0).children).add(newNode(5)); (root.children.get(0).children).add(newNode(6)); levelOrder(root); printList(result); }} |
Python3
# Python code for above implementationans = []level = 0class Node: def __init__(self, val): self.val = val self.children = []def levelOrder(root): global level if len(ans) == level: ans.append([root.val]) else: ans[level].append(root.val) level += 1 for n in root.children: levelOrder(n) level -= 1root = Node(1)root.children.append(Node(3))root.children.append(Node(2))root.children.append(Node(4))root.children[0].children.append(Node(5))root.children[0].children.append(Node(6))levelOrder(root)for v in ans: for x in v: print(x, end=" ") print()# This code is contributed by Tapesh(tapeshdua420) |
C#
// C# code for the above approachusing System;using System.Collections.Generic;public class GFG { static List<List<int> > result = new List<List<int> >(); static int level = 0; public class Node { public int val; public List<Node> children; public Node(int key) { val = key; children = new List<Node>(); } } // Utility function to create a new tree node static Node newNode(int key) { Node temp = new Node(key); return temp; } // method to find level order traversal of n-ary tree static void levelOrder(Node node) { if (node == null) { return; } List<int> list = result.Count > level ? result[level] : new List<int>(); // adding node value to the list list.Add(node.val); if (result.Count <= level) { result.Add(list); } // promoting/incrementing the level to next level++; foreach(Node n in node.children) { levelOrder(n); } level--; } // utility function to print level order traversal public static void printList(List<List<int> > temp) { foreach(List<int> it in temp) { foreach(int et in it) { Console.Write(et + " "); } Console.WriteLine(); } } static public void Main() { // Code Node root = newNode(1); (root.children).Add(newNode(3)); (root.children).Add(newNode(2)); (root.children).Add(newNode(4)); (root.children[0].children).Add(newNode(5)); (root.children[0].children).Add(newNode(6)); levelOrder(root); printList(result); }}// This code is contributed by sankar. |
Javascript
// JavaScript code for the above approach const ans = []; let level = 0; class Node { constructor(val) { this.val = val; this.children = []; } } function levelOrder(root) { if (ans.length === level) ans.push([root.val]); else ans[level].push(root.val); level++; for (const n of root.children) levelOrder(n); level--; } // create tree const root = new Node(1); root.children.push(new Node(3)); root.children.push(new Node(2)); root.children.push(new Node(4)); root.children[0].children.push(new Node(5)); root.children[0].children.push(new Node(6)); levelOrder(root); for (const v of ans) { for (const x of v) { console.log(x + " "); } console.log('<br>'); }// This code is contributed by Potta Lokesh |
1 3 2 4 5 6
Time Complexity: O(V)
Auxiliary Space: O(V)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!
