Thursday, October 23, 2025
HomeData Modelling & AICheck if a number is a Pythagorean Prime or not

Check if a number is a Pythagorean Prime or not

Given a positive integer N, check if it is Pythagorean prime or not. If it is a Pythagorean prime, print ‘Yes’ otherwise print ‘No’.
Pythagorean primes : A prime number of the form 4*n + 1 is a Pythagorean prime. It can also be expressed as sum of two squares. 
Pythagorean primes in the range 1 – 100 are: 
 

5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97 
 

Examples
 

Input : N = 5
Output : Yes
Explanation : 5 is a prime number and can be expressed 
in the form ( 4*n + 1 ) as ( 4*1 + 1 ).

Input : N = 13
Output : Yes
Explanation: 13 is a prime number and can be expressed 
in the form ( 4*n + 1 ) as ( 4*3 + 1 ).

 

A Simple Solution is to check first if the given number is prime or not and can be written in the form of 4*n + 1 or not. If yes, Then the number is Pythagorean prime, otherwise not.
Below is the implementation of the above approach
 

C++




// CPP program to check  if a number is
// Pythagorean prime or not
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if a number is
// prime or not
bool isPrime(int n)
{
    // Corner cases
    if (n <= 1)
        return false;
    if (n <= 3)
        return true;
 
    // This is checked so that we can skip
    // middle five numbers in below loop
    if (n % 2 == 0 || n % 3 == 0)
        return false;
 
    for (int i = 5; i * i <= n; i = i + 6) {
        if (n % i == 0 || n % (i + 2) == 0) {
            return false;
        }
    }
     
    return true;
}
 
// Driver Program
int main()
{
    int n = 13;
     
    // Check if number is prime
    // and of the form 4*n+1
    if (isPrime(n) && (n % 4 == 1)) {
        cout << "YES";
    }
    else {
        cout << "NO";
    }
 
    return 0;
}


Java




// JAVA program to check  if a number is
// Pythagorean prime or not
 
class GFG {
 
    // Function to check if a number
    // is prime or not
    static boolean isPrime(int n)
    {
        // Corner cases
        if (n <= 1)
            return false;
        if (n <= 3)
            return true;
 
        // This is checked so that we can skip
        // middle five numbers in below loop
        if (n % 2 == 0 || n % 3 == 0)
            return false;
 
        for (int i = 5; i * i <= n; i = i + 6) {
            if (n % i == 0 || n % (i + 2) == 0) {
                return false;
            }
        }
        return true;
    }
 
    // Driver Program
    public static void main(String[] args)
    {
        int n = 13;
 
        // Check if number is prime
        // and of the form 4n+1
        if (isPrime(n) && (n % 4 == 1)) {
            System.out.println("YES");
        }
        else {
            System.out.println("NO");
        }
    }
}


Python3




# Python 3 program to check if a number is
# Pythagorean prime or not
 
# Utility function to check
# if a number is prime or not
def isPrime(n) :
    # Corner cases
    if (n <= 1) :
        return False
    if (n <= 3) :
        return True
 
    # This is checked so that we can skip
    # middle five numbers in below loop
    if (n % 2 == 0 or n % 3 == 0) :
        return False
 
    i = 5
    while(i * i <= n) :
        if (n % i == 0 or n % (i + 2) == 0) :
            return False
        i = i + 6
 
    return True
         
# Driver Code
n = 13
     
# Check if number is prime
# and of the form 4n + 1
 
if(isPrime(n) and (n % 4 == 1)):
 
    print("YES")
 
else:
 
    print("NO")
      


C#




// C# program to check if a number
// is Pythagorean prime or not
using System;
 
class GFG
{
 
// Function to check if a number
// is prime or not
static bool isPrime(int n)
{
    // Corner cases
    if (n <= 1)
    {
        return false;
    }
    if (n <= 3)
    {
        return true;
    }
 
    // This is checked so that we
    // can skip middle five numbers
    // in below loop
    if (n % 2 == 0 || n % 3 == 0)
    {
        return false;
    }
 
    for (int i = 5; i * i <= n; i = i + 6)
    {
        if (n % i == 0 || n % (i + 2) == 0)
        {
            return false;
        }
    }
    return true;
}
 
// Driver Code
public static void Main(string[] args)
{
    int n = 13;
 
    // Check if number is prime
    // and of the form 4n+1
    if (isPrime(n) && (n % 4 == 1))
    {
        Console.WriteLine("YES");
    }
    else
    {
        Console.WriteLine("NO");
    }
}
}
 
// This code is contributed by Shrikant13


PHP




<?php
// PHP program to check if
// a number is Pythagorean
// prime or not
 
// Function to check if a
// number is prime or not
function isPrime($n)
{
    // Corner cases
    if ($n <= 1)
        return false;
    if ($n <= 3)
        return true;
 
    // This is checked so that
    // we can skip middle five
    // numbers in below loop
    if ($n % 2 == 0 or $n % 3 == 0)
        return false;
 
    for ($i = 5; $i * $i <= $n;
                 $i = $i + 6)
    {
        if ($n % $i == 0 or
            $n % ($i + 2) == 0)
        {
            return false;
        }
    }
     
    return true;
}
 
// Driver Code
$n = 13;
 
// Check if number is prime
// and of the form 4*n+1
if (isPrime($n) && ($n % 4 == 1))
{
    echo "YES";
}
else
{
    echo "NO";
}
 
// This code is contributed
// by inder_verma
?>


Javascript




<script>
 
 
// Javascript program to check  if a number is
// Pythagorean prime or not
 
// Function to check if a number is
// prime or not
function isPrime(n)
{
    // Corner cases
    if (n <= 1)
        return false;
    if (n <= 3)
        return true;
 
    // This is checked so that we can skip
    // middle five numbers in below loop
    if (n % 2 == 0 || n % 3 == 0)
        return false;
 
    for (var i = 5; i * i <= n; i = i + 6) {
        if (n % i == 0 || n % (i + 2) == 0) {
            return false;
        }
    }
     
    return true;
}
 
// Driver Program
var n = 13;
  
// Check if number is prime
// and of the form 4*n+1
if (isPrime(n) && (n % 4 == 1)) {
    document.write( "YES");
}
else {
    document.write( "NO");
}
 
// This code is contributed by itsok.
</script>


Output: 

YES

 

Time Complexity: O(sqrt(n))

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32361 POSTS0 COMMENTS
Milvus
88 POSTS0 COMMENTS
Nango Kala
6728 POSTS0 COMMENTS
Nicole Veronica
11892 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11954 POSTS0 COMMENTS
Shaida Kate Naidoo
6852 POSTS0 COMMENTS
Ted Musemwa
7113 POSTS0 COMMENTS
Thapelo Manthata
6805 POSTS0 COMMENTS
Umr Jansen
6801 POSTS0 COMMENTS