Sunday, September 7, 2025
HomeData Modelling & AICheck for an array element that is co-prime with all others

Check for an array element that is co-prime with all others

Given an array arr[] of positive integers where 2 ? arr[i] ? 106 for all possible values of i. The task is to check whether there exists at least one element in the given array that forms co-prime pair with all other elements of the array. If no such element exists then print No else print Yes.

Examples: 

Input: arr[] = {2, 8, 4, 10, 6, 7} 
Output: Yes 
7 is co-prime with all the other elements of the array

Input: arr[] = {3, 6, 9, 12} 
Output: No 
 

Naive approach: A simple solution is to check whether the gcd of every element with all other elements is equal to 1. Time complexity of this solution is O(n2).

Efficient approach: An efficient solution is to generate all the prime factors of integers in the given array. Using hash, store the count of every element which is a prime factor of any of the number in the array. If the element does not contain any common prime factor with other elements, it always forms a co-prime pair with other elements. 
For generating prime factors please go through the article Prime Factorization using Sieve in O(log n)

Below is the implementation of the above approach:  

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
#define MAXN 1000001
 
// Stores smallest prime factor for every number
int spf[MAXN];
 
// Hash to store prime factors count
int hash1[MAXN] = { 0 };
 
// Function to calculate SPF (Smallest Prime Factor)
// for every number till MAXN
void sieve()
{
    spf[1] = 1;
    for (int i = 2; i < MAXN; i++)
 
        // Marking smallest prime factor for every
        // number to be itself
        spf[i] = i;
 
    // Separately marking spf for every even
    // number as 2
    for (int i = 4; i < MAXN; i += 2)
        spf[i] = 2;
 
    // Checking if i is prime
    for (int i = 3; i * i < MAXN; i++) {
 
        // Marking SPF for all numbers divisible by i
        if (spf[i] == i) {
            for (int j = i * i; j < MAXN; j += i)
 
                // Marking spf[j] if it is not
                // previously marked
                if (spf[j] == j)
                    spf[j] = i;
        }
    }
}
 
// Function to store the prime factors after dividing
// by the smallest prime factor at every step
void getFactorization(int x)
{
    int temp;
    while (x != 1) {
        temp = spf[x];
        if (x % temp == 0) {
 
            // Storing the count of
            // prime factors in hash
            hash1[spf[x]]++;
            x = x / spf[x];
        }
        while (x % temp == 0)
            x = x / temp;
    }
}
 
// Function that returns true if there are
// no common prime factors between x
// and other numbers of the array
bool check(int x)
{
    int temp;
    while (x != 1) {
        temp = spf[x];
 
        // Checking whether it common
        // prime factor with other numbers
        if (x % temp == 0 && hash1[temp] > 1)
            return false;
        while (x % temp == 0)
            x = x / temp;
    }
    return true;
}
 
// Function that returns true if there is
// an element in the array which is coprime
// with all the other elements of the array
bool hasValidNum(int arr[], int n)
{
 
    // Using sieve for generating prime factors
    sieve();
 
    for (int i = 0; i < n; i++)
        getFactorization(arr[i]);
 
    // Checking the common prime factors
    // with other numbers
    for (int i = 0; i < n; i++)
        if (check(arr[i]))
            return true;
 
    return false;
}
 
// Driver code
int main()
{
    int arr[] = { 2, 8, 4, 10, 6, 7 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    if (hasValidNum(arr, n))
        cout << "Yes";
    else
        cout << "No";
    return 0;
}


Java




// Java implementation of the approach
class GFG
{
     
static int MAXN = 1000001;
 
// Stores smallest prime factor for every number
static int[] spf = new int[MAXN];
 
// Hash to store prime factors count
static int[] hash1 = new int[MAXN];
 
// Function to calculate SPF (Smallest Prime Factor)
// for every number till MAXN
static void sieve()
{
    spf[1] = 1;
    for (int i = 2; i < MAXN; i++)
 
        // Marking smallest prime factor for every
        // number to be itself
        spf[i] = i;
 
    // Separately marking spf for every even
    // number as 2
    for (int i = 4; i < MAXN; i += 2)
        spf[i] = 2;
 
    // Checking if i is prime
    for (int i = 3; i * i < MAXN; i++)
    {
 
        // Marking SPF for all numbers divisible by i
        if (spf[i] == i)
        {
            for (int j = i * i; j < MAXN; j += i)
 
                // Marking spf[j] if it is not
                // previously marked
                if (spf[j] == j)
                    spf[j] = i;
        }
    }
}
 
// Function to store the prime factors after dividing
// by the smallest prime factor at every step
static void getFactorization(int x)
{
    int temp;
    while (x != 1)
    {
        temp = spf[x];
        if (x % temp == 0)
        {
 
            // Storing the count of
            // prime factors in hash
            hash1[spf[x]]++;
            x = x / spf[x];
        }
        while (x % temp == 0)
            x = x / temp;
    }
}
 
// Function that returns true if there are
// no common prime factors between x
// and other numbers of the array
static boolean check(int x)
{
    int temp;
    while (x != 1)
    {
        temp = spf[x];
 
        // Checking whether it common
        // prime factor with other numbers
        if (x % temp == 0 && hash1[temp] > 1)
            return false;
        while (x % temp == 0)
            x = x / temp;
    }
    return true;
}
 
// Function that returns true if there is
// an element in the array which is coprime
// with all the other elements of the array
static boolean hasValidNum(int []arr, int n)
{
 
    // Using sieve for generating prime factors
    sieve();
 
    for (int i = 0; i < n; i++)
        getFactorization(arr[i]);
 
    // Checking the common prime factors
    // with other numbers
    for (int i = 0; i < n; i++)
        if (check(arr[i]))
            return true;
 
    return false;
}
 
// Driver code
public static void main (String[] args)
{
 
    int []arr = { 2, 8, 4, 10, 6, 7 };
    int n = arr.length;
 
    if (hasValidNum(arr, n))
        System.out.println("Yes");
    else
        System.out.println("No");
}
}
 
// This code is contributed by chandan_jnu


Python3




# Python3 implementation of the approach
MAXN = 1000001
 
# Stores smallest prime factor for
# every number
spf = [i for i in range(MAXN)]
 
# Hash to store prime factors count
hash1 = [0 for i in range(MAXN)]
 
# Function to calculate SPF (Smallest
# Prime Factor) for every number till MAXN
def sieve():
 
    # Separately marking spf for
    # every even number as 2
    for i in range(4, MAXN, 2):
        spf[i] = 2
 
    # Checking if i is prime
    for i in range(3, MAXN):
 
        if i * i >= MAXN:
            break
 
        # Marking SPF for all numbers
        # divisible by i
        if (spf[i] == i):
            for j in range(i * i, MAXN, i):
 
                # Marking spf[j] if it is not
                # previously marked
                if (spf[j] == j):
                    spf[j] = i
 
# Function to store the prime factors
# after dividing by the smallest prime
# factor at every step
def getFactorization(x):
 
    while (x != 1):
        temp = spf[x]
        if (x % temp == 0):
 
            # Storing the count of
            # prime factors in hash
            hash1[spf[x]] += 1
            x = x // spf[x]
 
        while (x % temp == 0):
            x = x // temp
 
# Function that returns true if there
# are no common prime factors between x
# and other numbers of the array
def check(x):
 
    while (x != 1):
        temp = spf[x]
 
        # Checking whether it common
        # prime factor with other numbers
        if (x % temp == 0 and hash1[temp] > 1):
            return False
        while (x % temp == 0):
            x = x //temp
     
    return True
 
# Function that returns true if there is
# an element in the array which is coprime
# with all the other elements of the array
def hasValidNum(arr, n):
 
    # Using sieve for generating
    # prime factors
    sieve()
 
    for i in range(n):
        getFactorization(arr[i])
 
    # Checking the common prime factors
    # with other numbers
    for i in range(n):
        if (check(arr[i])):
            return True
 
    return False
 
# Driver code
arr = [2, 8, 4, 10, 6, 7]
n = len(arr)
 
if (hasValidNum(arr, n)):
    print("Yes")
else:
    print("No")
 
# This code is contributed by mohit kumar


C#




// C# implementation of the approach
using System;
 
class GFG
{
     
static int MAXN=1000001;
 
// Stores smallest prime factor for every number
static int[] spf = new int[MAXN];
 
// Hash to store prime factors count
static int[] hash1 = new int[MAXN];
 
// Function to calculate SPF (Smallest Prime Factor)
// for every number till MAXN
static void sieve()
{
    spf[1] = 1;
    for (int i = 2; i < MAXN; i++)
 
        // Marking smallest prime factor for every
        // number to be itself
        spf[i] = i;
 
    // Separately marking spf for every even
    // number as 2
    for (int i = 4; i < MAXN; i += 2)
        spf[i] = 2;
 
    // Checking if i is prime
    for (int i = 3; i * i < MAXN; i++)
    {
 
        // Marking SPF for all numbers divisible by i
        if (spf[i] == i)
        {
            for (int j = i * i; j < MAXN; j += i)
 
                // Marking spf[j] if it is not
                // previously marked
                if (spf[j] == j)
                    spf[j] = i;
        }
    }
}
 
// Function to store the prime factors after dividing
// by the smallest prime factor at every step
static void getFactorization(int x)
{
    int temp;
    while (x != 1)
    {
        temp = spf[x];
        if (x % temp == 0)
        {
 
            // Storing the count of
            // prime factors in hash
            hash1[spf[x]]++;
            x = x / spf[x];
        }
        while (x % temp == 0)
            x = x / temp;
    }
}
 
// Function that returns true if there are
// no common prime factors between x
// and other numbers of the array
static bool check(int x)
{
    int temp;
    while (x != 1)
    {
        temp = spf[x];
 
        // Checking whether it common
        // prime factor with other numbers
        if (x % temp == 0 && hash1[temp] > 1)
            return false;
        while (x % temp == 0)
            x = x / temp;
    }
    return true;
}
 
// Function that returns true if there is
// an element in the array which is coprime
// with all the other elements of the array
static bool hasValidNum(int []arr, int n)
{
 
    // Using sieve for generating prime factors
    sieve();
 
    for (int i = 0; i < n; i++)
        getFactorization(arr[i]);
 
    // Checking the common prime factors
    // with other numbers
    for (int i = 0; i < n; i++)
        if (check(arr[i]))
            return true;
 
    return false;
}
 
// Driver code
static void Main()
{
    int []arr = { 2, 8, 4, 10, 6, 7 };
    int n = arr.Length;
 
    if (hasValidNum(arr, n))
        Console.WriteLine("Yes");
    else
        Console.WriteLine("No");
}
}
 
// This code is contributed by chandan_jnu


PHP




<?php
// PHP implementation of the approach
 
$MAXN = 10001;
 
// Stores smallest prime factor for every number
$spf = array_fill(0, $MAXN, 0);
 
// Hash to store prime factors count
$hash1 = array_fill(0, $MAXN, 0);
 
// Function to calculate SPF (Smallest Prime Factor)
// for every number till MAXN
function sieve()
{
    global $spf, $MAXN, $hash1;
    $spf[1] = 1;
    for ($i = 2; $i < $MAXN; $i++)
 
        // Marking smallest prime factor for every
        // number to be itself
        $spf[$i] = $i;
 
    // Separately marking spf for every even
    // number as 2
    for ($i = 4; $i < $MAXN; $i += 2)
        $spf[$i] = 2;
 
    // Checking if i is prime
    for ($i = 3; $i * $i < $MAXN; $i++)
    {
 
        // Marking SPF for all numbers divisible by i
        if ($spf[$i] == $i)
        {
            for ($j = $i * $i; $j < $MAXN; $j += $i)
 
                // Marking spf[j] if it is not
                // previously marked
                if ($spf[$j] == $j)
                    $spf[$j] = $i;
        }
    }
}
 
// Function to store the prime factors after dividing
// by the smallest prime factor at every step
function getFactorization($x)
{
    global $spf,$MAXN,$hash1;
    while ($x != 1)
    {
        $temp = $spf[$x];
        if ($x % $temp == 0)
        {
 
            // Storing the count of
            // prime factors in hash
            $hash1[$spf[$x]]++;
            $x = (int)($x / $spf[$x]);
        }
        while ($x % $temp == 0)
            $x = (int)($x / $temp);
    }
}
 
// Function that returns true if there are
// no common prime factors between x
// and other numbers of the array
function check($x)
{
    global $spf,$MAXN,$hash1;
    while ($x != 1)
    {
        $temp = $spf[$x];
 
        // Checking whether it common
        // prime factor with other numbers
        if ($x % $temp == 0 && $hash1[$temp] > 1)
            return false;
        while ($x % $temp == 0)
            $x = (int)($x / $temp);
    }
    return true;
}
 
// Function that returns true if there is
// an element in the array which is coprime
// with all the other elements of the array
function hasValidNum($arr, $n)
{
    global $spf,$MAXN,$hash1;
 
    // Using sieve for generating prime factors
    sieve();
 
    for ($i = 0; $i < $n; $i++)
        getFactorization($arr[$i]);
 
    // Checking the common prime factors
    // with other numbers
    for ($i = 0; $i < $n; $i++)
        if (check($arr[$i]))
            return true;
 
    return false;
}
 
// Driver code
    $arr = array( 2, 8, 4, 10, 6, 7 );
    $n = count($arr);
 
    if (hasValidNum($arr, $n))
        echo "Yes";
    else
        echo "No";
 
// This code is contributed by chandan_jnu
?>


Javascript




<script>
 
// Javascript implementation of the approach
let MAXN = 1000001;
 
// Stores smallest prime factor for every number
let spf = new Array(MAXN);
 
// Hash to store prime factors count
let hash1 = new Array(MAXN);
 
// Function to calculate SPF (Smallest Prime Factor)
// for every number till MAXN
function sieve()
{
    spf[1] = 1;
    for(let i = 2; i < MAXN; i++)
     
        // Marking smallest prime factor for
        // every number to be itself
        spf[i] = i;
   
    // Separately marking spf for every even
    // number as 2
    for(let i = 4; i < MAXN; i += 2)
        spf[i] = 2;
   
    // Checking if i is prime
    for(let i = 3; i * i < MAXN; i++)
    {
         
        // Marking SPF for all numbers divisible by i
        if (spf[i] == i)
        {
            for(let j = i * i; j < MAXN; j += i)
   
                // Marking spf[j] if it is not
                // previously marked
                if (spf[j] == j)
                    spf[j] = i;
        }
    }
}
 
// Function to store the prime factors
// after dividing by the smallest prime
// factor at every step
function getFactorization(x)
{
    let temp;
    while (x != 1)
    {
        temp = spf[x];
        if (x % temp == 0)
        {
   
            // Storing the count of
            // prime factors in hash
            hash1[spf[x]]++;
            x = x / spf[x];
        }
        while (x % temp == 0)
            x = x / temp;
    }
}
 
// Function that returns true if there are
// no common prime factors between x
// and other numbers of the array
function check(x)
{
    let temp;
    while (x != 1)
    {
        temp = spf[x];
   
        // Checking whether it common
        // prime factor with other numbers
        if (x % temp == 0 && hash1[temp] > 1)
            return false;
             
        while (x % temp == 0)
            x = x / temp;
    }
    return true;
}
 
// Function that returns true if there is
// an element in the array which is coprime
// with all the other elements of the array
function hasValidNum(arr, n)
{
     
    // Using sieve for generating prime factors
    sieve();
   
    for(let i = 0; i < n; i++)
        getFactorization(arr[i]);
   
    // Checking the common prime factors
    // with other numbers
    for(let i = 0; i < n; i++)
        if (check(arr[i]))
            return true;
   
    return false;
}
 
// Driver code
let arr = [ 2, 8, 4, 10, 6, 7 ];
let n = arr.length;
 
if (hasValidNum(arr, n))
    document.write("Yes");
else
    document.write("No");
 
// This code is contributed by unknown2108
 
</script>


Output: 

Yes

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Dominic
32271 POSTS0 COMMENTS
Milvus
82 POSTS0 COMMENTS
Nango Kala
6642 POSTS0 COMMENTS
Nicole Veronica
11808 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11871 POSTS0 COMMENTS
Shaida Kate Naidoo
6755 POSTS0 COMMENTS
Ted Musemwa
7030 POSTS0 COMMENTS
Thapelo Manthata
6705 POSTS0 COMMENTS
Umr Jansen
6721 POSTS0 COMMENTS