Thursday, November 20, 2025
HomeData Modelling & AINumbers that are not divisible by any number in the range

Numbers that are not divisible by any number in the range [2, 10]

Given an integer N, The task is to find the count of all the numbers from 1 to N which are not divisible by any number in the range [2, 10].

Examples: 

Input: N = 12 
Output:
1, 11 are the only numbers in range [1, 12] which are not divisible by any number from 2 to 10

Input: N = 20 
Output:

Approach: Total numbers from 1 to n which are not divisible by any number from 2 to 10 are equal to n minus the numbers which are divisible by some numbers from 2 to 10.

The set of numbers that are divisible by some numbers from 2 to 10 can be found as union of the set of numbers from 1 to n divisible by 2, the set of numbers divisible by 3, and so on till 10.

Note that sets of numbers divisible by 4 or 6 or 8 are subsets of the set of numbers divisible by 2, and sets of numbers divisible by 6 or 9 are subsets of the set of numbers divisible by 3. So there is no need to unite 9 sets, it is enough to unite sets for 2, 3, 5, and 7 only.

The size of the set of numbers from 1 to n divisible by 2, 3, 5, and 7 can be calculated using an inclusion-exclusion principle that says that the size of every single set should be added, the size of pairwise intersections should be subtracted, the size of all intersections of three sets should be added and so on.

The size of the set of numbers from 1 to n divisible by 2 is equal to ?n / 2?, the size of the set of numbers from 1 to n divisible by 2 and 3 is equal to ?n / (2 * 3)? and so on.

So, the formula is n – ?n / 2? – ?n / 3? – ?n / 5? – ?n / 7? + ?n / (2 * 3)] + ?n / (2 * 5)] + ?n / (2 * 7)] + ?n / (3 * 5)] + ?n / (3 * 7)] + ?n / (5 * 7)] – ?n / (2 * 3 * 5)] – ?n / (2 * 3 * 7)] – ?n / (2 * 5 * 7)] – ?n / (3 * 5 * 7)]+ ?n / (2 * 3 * 5 * 7)]

Below is the implementation of the above approach:  

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the count of numbers
// from 1 to N which are not divisible by
// any number in the range [2, 10]
int countNumbers(int n)
{
    return n - n / 2 - n / 3 - n / 5 - n / 7
           + n / 6 + n / 10 + n / 14 + n / 15 + n / 21 + n / 35
           - n / 30 - n / 42 - n / 70 - n / 105 + n / 210;
}
 
// Driver code
int main()
{
    int n = 20;
    cout << countNumbers(n);
 
    return 0;
}


Java




// Java implementation of the approach
import java.io.*;
public class GFG
{
     
// Function to return the count of numbers
// from 1 to N which are not divisible by
// any number in the range [2, 10]
static int countNumbers(int n)
{
    return n - n / 2 - n / 3 - n / 5 - n / 7
        + n / 6 + n / 10 + n / 14 + n / 15 + n / 21 + n / 35
        - n / 30 - n / 42 - n / 70 - n / 105 + n / 210;
}
 
// Driver code
public static void main (String[] args)
{
    int n = 20;
    System.out.println(countNumbers(n));
}
}
 
// This code is contributed by mits


Python3




# Python3 implementation of the approach
 
# Function to return the count of numbers
# from 1 to N which are not divisible by
# any number in the range [2, 10]
def countNumbers(n):
    return (n - n // 2 - n // 3 - n // 5 - n // 7 +
             n // 6 + n // 10 + n // 14 + n // 15 +
             n // 21 + n // 35 - n // 30 - n // 42 -
             n // 70 - n // 105 + n // 210)
 
# Driver code
if __name__ == '__main__':
    n = 20
    print(countNumbers(n))
 
# This code contributed by Rajput-Ji


C#




// C# implementation of the approach
using System;
 
class GFG
{
     
// Function to return the count of numbers
// from 1 to N which are not divisible by
// any number in the range [2, 10]
static int countNumbers(int n)
{
    return n - n / 2 - n / 3 - n / 5 - n / 7
        + n / 6 + n / 10 + n / 14 + n / 15 + n / 21 + n / 35
        - n / 30 - n / 42 - n / 70 - n / 105 + n / 210;
}
 
// Driver code
static void Main()
{
    int n = 20;
    Console.WriteLine(countNumbers(n));
}
}
 
// This code is contributed by mits


PHP




<?php
// PHP implementation of the approach
 
// Function to return the count of numbers
// from 1 to N which are not divisible by
// any number in the range [2, 10]
function countNumbers($n)
{
    return (int)($n - $n / 2) - (int)($n / 3 ) -
           (int)($n / 5 ) - (int)($n / 7) +
           (int)($n / 6 ) + (int)($n / 10) +
           (int)($n / 14) + (int)($n / 15) +
           (int)($n / 21) + (int)($n / 35) -
           (int)($n / 30) - (int)($n / 42) -
           (int)($n / 70) - (int)($n / 105) +
           (int)($n / 210);
}
 
// Driver code
$n = 20;
echo(countNumbers($n));
 
// This code is contributed by Code_Mech.
?>


Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to return the count of numbers
// from 1 to N which are not divisible by
// any number in the range [2, 10]
function countNumbers(n)
{
    return n - parseInt(n / 2, 10) - parseInt(n / 3, 10) -
               parseInt(n / 5, 10) - parseInt(n / 7, 10) +
               parseInt(n / 6, 10) + parseInt(n / 10, 10) +
               parseInt(n / 14, 10) + parseInt(n / 15, 10) +
               parseInt(n / 21, 10) + parseInt(n / 35, 10) -
               parseInt(n / 30, 10) - parseInt(n / 42, 10) -
               parseInt(n / 70, 10) - parseInt(n / 105, 10) +
               parseInt(n / 210, 10);
}
 
// Driver code
let n = 20;
 
document.write(countNumbers(n));
 
// This code is contributed by mukesh07
 
</script>


Output: 

5

 

Time Complexity: O(1)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Dominic
32405 POSTS0 COMMENTS
Milvus
97 POSTS0 COMMENTS
Nango Kala
6781 POSTS0 COMMENTS
Nicole Veronica
11927 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11995 POSTS0 COMMENTS
Shaida Kate Naidoo
6906 POSTS0 COMMENTS
Ted Musemwa
7164 POSTS0 COMMENTS
Thapelo Manthata
6862 POSTS0 COMMENTS
Umr Jansen
6847 POSTS0 COMMENTS