Thursday, August 28, 2025
HomeData Modelling & AIFind all the possible remainders when N is divided by all positive...

Find all the possible remainders when N is divided by all positive integers from 1 to N+1

Given a large integer N, the task is to find all the possible remainders when N is divided by all the positive integers from 1 to N + 1.

Examples: 

Input: N = 5 
Output: 0 1 2 5 
5 % 1 = 0 
5 % 2 = 1 
5 % 3 = 2 
5 % 4 = 1 
5 % 5 = 0 
5 % 6 = 5

Input: N = 11 
Output: 0 1 2 3 5 11 
 

Naive approach: Run a loop from 1 to N + 1 and return all the unique remainders found when dividing N by any integer from the range. But this approach is not efficient for larger values of N.

Efficient approach: It can be observed that one part of the answer will always contain numbers between 0 to ceil(sqrt(n)). It can be proven by running the naive algorithm on smaller values of N and checking the remainders obtained or by solving the equation ceil(N / k) = x or x ? (N / k) < x + 1 where x is one of the remainders for all integers k when N is divided by k for k from 1 to N + 1
The solution to the above inequality is nothing but integers k from (N / (x + 1), N / x] of length N / x – N / (x + 1) = N / (x2 + x). Therefore, iterate from k = 1 to ceil(sqrt(N)) and store all the unique N % k. What if the above k is greater than ceil(sqrt(N))? They will always correspond to values 0 ? x < ceil(sqrt(N)). So, again start storing remainders from N / (ceil(sqrt(N)) – 1 to 0 and return the final answer with all the possible remainders.

Below is the implementation of the above approach:  

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
typedef long long int ll;
 
// Function to find all the distinct
// remainders when n is divided by
// all the elements from
// the range [1, n + 1]
void findRemainders(ll n)
{
 
    // Set will be used to store
    // the remainders in order
    // to eliminate duplicates
    set<ll> vc;
 
    // Find the remainders
    for (ll i = 1; i <= ceil(sqrt(n)); i++)
        vc.insert(n / i);
    for (ll i = n / ceil(sqrt(n)) - 1; i >= 0; i--)
        vc.insert(i);
 
    // Print the contents of the set
    for (auto it : vc)
        cout << it << " ";
}
 
// Driver code
int main()
{
    ll n = 5;
 
    findRemainders(n);
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
 
// Function to find all the distinct
// remainders when n is divided by
// all the elements from
// the range [1, n + 1]
static void findRemainders(long n)
{
 
    // Set will be used to store
    // the remainders in order
    // to eliminate duplicates
    HashSet<Long> vc = new HashSet<Long>();
 
    // Find the remainders
    for (long i = 1; i <= Math.ceil(Math.sqrt(n)); i++)
        vc.add(n / i);
    for (long i = (long) (n / Math.ceil(Math.sqrt(n)) - 1);
                                                i >= 0; i--)
        vc.add(i);
 
    // Print the contents of the set
    for (long it : vc)
        System.out.print(it+ " ");
}
 
// Driver code
public static void main(String[] args)
{
    long n = 5;
 
    findRemainders(n);
}
}
 
// This code is contributed by 29AjayKumar


Python3




# Python3 implementation of the approach
from math import ceil, floor, sqrt
 
# Function to find all the distinct
# remainders when n is divided by
# all the elements from
# the range [1, n + 1]
def findRemainders(n):
 
    # Set will be used to store
    # the remainders in order
    # to eliminate duplicates
    vc = dict()
 
    # Find the remainders
    for i in range(1, ceil(sqrt(n)) + 1):
        vc[n // i] = 1
    for i in range(n // ceil(sqrt(n)) - 1, -1, -1):
        vc[i] = 1
 
    # Print the contents of the set
    for it in sorted(vc):
        print(it, end = " ")
 
# Driver code
n = 5
 
findRemainders(n)
 
# This code is contributed by Mohit Kumar


C#




// C# implementation of the approach
using System;
using System.Collections.Generic;
 
class GFG
{
 
// Function to find all the distinct
// remainders when n is divided by
// all the elements from
// the range [1, n + 1]
static void findRemainders(long n)
{
 
    // Set will be used to store
    // the remainders in order
    // to eliminate duplicates
    List<long> vc = new List<long>();
 
    // Find the remainders
 
    for (long i = 1; i <= Math.Ceiling(Math.Sqrt(n)); i++)
        vc.Add(n / i);
    for (long i = (long) (n / Math.Ceiling(Math.Sqrt(n)) - 1);
                                                 i >= 0; i--)
        vc.Add(i);
    vc.Reverse();
     
    // Print the contents of the set
    foreach (long it in vc)
        Console.Write(it + " ");
}
 
// Driver code
public static void Main(String[] args)
{
    long n = 5;
 
    findRemainders(n);
}
}
 
// This code is contributed by PrinciRaj1992


Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to find all the distinct
// remainders when n is divided by
// all the elements from
// the range [1, n + 1]
function findRemainders(n)
{
     
    // Set will be used to store
    // the remainders in order
    // to eliminate duplicates
    var vc = new Set();
 
    // Find the remainders
    for(var i = 1; i <= Math.ceil(Math.sqrt(n)); i++)
        vc.add(parseInt(n / i));
    for(var i = parseInt(n / Math.ceil(Math.sqrt(n))) - 1;
            i >= 0; i--)
        vc.add(i);
 
    // Print the contents of the set
    [...vc].sort((a, b) => a - b).forEach(it => {
        document.write(it + " ");
    });
}
 
// Driver code
var n = 5;
 
findRemainders(n);
 
// This code is contributed by famously
 
</script>


Output: 

0 1 2 5

 

Time Complexity: O(sqrt(n))

Auxiliary Space: O(sqrt(n))

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Dominic
32245 POSTS0 COMMENTS
Milvus
80 POSTS0 COMMENTS
Nango Kala
6615 POSTS0 COMMENTS
Nicole Veronica
11787 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11833 POSTS0 COMMENTS
Shaida Kate Naidoo
6729 POSTS0 COMMENTS
Ted Musemwa
7011 POSTS0 COMMENTS
Thapelo Manthata
6684 POSTS0 COMMENTS
Umr Jansen
6699 POSTS0 COMMENTS