Saturday, October 18, 2025
HomeData Modelling & AIJulia Fractal set in C/C++ Using Graphics

Julia Fractal set in C/C++ Using Graphics

JSr07885.gif

The Julia set is associated with those points z = x + iy on the complex plane for which the series zn+1 = zn2 + c does not tend to infinity. c is a complex constant, one gets a different Julia set for each c. The initial value z0 for the series is each point in the image plane.

The well known Mandelbrot set forms a kind of index into the Julia set. A Julia set is either connected or disconnected, values of c chosen from within the Mandelbrot set are connected while those from the outside of the Mandelbrot set are disconnected. The disconnected sets are often called “dust”, they consist of individual points no matter what resolution they are viewed at.

Code




#include <complex.h>
#include <stdio.h>
#include <tgmath.h>
#include <winbgim.h>
  
#define Y 1079
#define X 1919
  
// To recursively find the end value
// of the passed point till the pixel
// goes out of the bounded region
// or the maximum depth is reached.
int julia_point(float x, float y,
                int r, int depth,
                int max,
                double _Complex c,
                double _Complex z)
{
    if (cabs(z) > r) {
        putpixel(x, y,
                 COLOR(255 - 255 * ((max - depth) * (max - depth)) % (max * max),
                       0, 0));
        depth = 0;
    }
    if (sqrt(pow((x - X / 2), 2)
             + pow((y - Y / 2), 2))
        > Y / 2) {
        putpixel(x, y, 0);
    }
    if (depth < max / 4) {
        return 0;
    }
    julia_point(x, y, r,
                depth - 1, max,
                c, cpow(z, 2) + c);
}
  
// To select the points in a Julia set.
void juliaset(int depth, double _Complex c, int r, int detail)
{
    for (float x = X / 2 - Y / 2; x < X / 2 + Y / 2; x += detail) {
        for (float y = 0; y < Y; y += detail) {
            julia_point(x, y, r,
                        depth, depth, c,
                        (2 * r * (x - X / 2) / Y)
                            + (2 * r * (y - Y / 2) / Y)
                                  * _Complex_I);
        }
    }
}
  
// Driver code
int main()
{
    initwindow(X, Y);
    int depth = 100, r = 2, detail = 1;
  
    // Initial value for Julia
    // set taken by my personal preference.
    double _Complex c = 0.282 - 0.58 * _Complex_I;
    while (1) {
  
        cleardevice();
  
        // To formulate the display text
        // for the 'c' coordinate
        // into string format.
        char str1[100], str2[100], strtemp[100];
        if (floor(creal(c)) == -1) {
            strcpy(str1, "-0.");
        }
        if (floor(creal(c)) == -0) {
            strcpy(str1, "0.");
        }
        if (floor(cimag(c)) == -1) {
            strcpy(str2, "-0.");
        }
        if (floor(cimag(c)) == -0) {
            strcpy(str2, "0.");
        }
        itoa(sqrt(pow(creal(c), 2)) * 1000, strtemp, 10);
        strcat(str1, strtemp);
        strcat(str1, ", ");
        itoa(sqrt(pow(cimag(c), 2)) * 1000, strtemp, 10);
        strcat(str2, strtemp);
        strcat(str1, str2);
        outtextxy(X * 0.8, Y * 0.8, str1);
  
        // To call the julia-set for the selected value of 'c'.
        juliaset(depth, c, r, detail);
        outtextxy(X / 3, Y * 0.9,
                  "Press '1' to Exit, Space to"
                  " select a point or any "
                  "other key to continue");
        char key = getch();
  
        if (key == '\n') {
            break;
        }
  
        // To select the value of 'c'
        // using the position of the mouse and then
        // normalizing it between a value of -1-1i and 1+1i.
        while (key == ' ') {
  
            c = 2 * (double)(mousex() - X / 2) / X + 2 * (mousey() - Y / 2) * _Complex_I / Y;
  
            if (floor(creal(c)) == -1) {
                strcpy(str1, "-0.");
            }
  
            if (floor(creal(c)) == -0) {
                strcpy(str1, "0.");
            }
  
            if (floor(cimag(c)) == -1) {
                strcpy(str2, "-0.");
            }
  
            if (floor(cimag(c)) == -0) {
                strcpy(str2, "0.");
            }
  
            itoa(sqrt(pow(creal(c), 2))
                     * 1000,
                 strtemp, 10);
            strcat(str1, strtemp);
            strcat(str1, ", ");
            itoa(sqrt(pow(cimag(c), 2))
                     * 1000,
                 strtemp, 10);
            strcat(str2, strtemp);
            strcat(str1, str2);
            outtextxy(X * 0.8, Y * 0.8, str1);
            if (kbhit()) {
                key = getch();
            }
        }
    }
    closegraph();
    return 0;
}


Output




Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Dominic
32361 POSTS0 COMMENTS
Milvus
88 POSTS0 COMMENTS
Nango Kala
6728 POSTS0 COMMENTS
Nicole Veronica
11892 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11954 POSTS0 COMMENTS
Shaida Kate Naidoo
6852 POSTS0 COMMENTS
Ted Musemwa
7113 POSTS0 COMMENTS
Thapelo Manthata
6805 POSTS0 COMMENTS
Umr Jansen
6801 POSTS0 COMMENTS