Given a 3-D array arr[l][m][n], the task is to find the minimum path sum from the first cell of the array to the last cell of the array. We can only traverse to adjacent element, i.e., from a given cell (i, j, k), cells (i+1, j, k), (i, j+1, k) and (i, j, k+1) can be traversed, diagonal traversing is not allowed, We may assume that all costs are positive integers.
Examples:Â Â
Input : arr[][][]= { {{1, 2}, {3, 4}},
{{4, 8}, {5, 2}} };
Output : 9
Explanation : arr[0][0][0] + arr[0][0][1] +
arr[0][1][1] + arr[1][1][1]
Input : { { {1, 2}, {4, 3}},
{ {3, 4}, {2, 1}} };
Output : 7
Explanation : arr[0][0][0] + arr[0][0][1] +
arr[0][1][1] + arr[1][1][1]
Let us consider a 3-D array arr[2][2][2] represented by a cuboid having values as:Â
arr[][][] = {{{1, 2}, {3, 4}},
{ {4, 8}, {5, 2}}};
Result = 9 is calculated as:
This problem is similar to Min cost path. and can be solved using Dynamic Programming.
// Array for storing result
int tSum[l][m][n];
tSum[0][0][0] = arr[0][0][0];
/* Initialize first row of tSum array */
for (i = 1; i < l; i++)
tSum[i][0][0] = tSum[i-1][0][0] + arr[i][0][0];
/* Initialize first column of tSum array */
for (j = 1; j < m; j++)
tSum[0][j][0] = tSum[0][j-1][0] + arr[0][j][0];
/* Initialize first width of tSum array */
for (k = 1; k < n; k++)
tSum[0][0][k] = tSum[0][0][k-1] + arr[0][0][k];
/* Initialize first row- First column of tSum
array */
for (i = 1; i < l; i++)
for (j = 1; j < m; j++)
tSum[i][j][0] = min(tSum[i-1][j][0],
tSum[i][j-1][0],
INT_MAX)
+ arr[i][j][0];
/* Initialize first row- First width of tSum
array */
for (i = 1; i < l; i++)
for (k = 1; k < n; k++)
tSum[i][0][k] = min(tSum[i-1][0][k],
tSum[i][0][k-1],
INT_MAX)
+ arr[i][0][k];
/* Initialize first width- First column of
tSum array */
for (k = 1; k < n; k++)
for (j = 1; j < m; j++)
tSum[0][j][k] = min(tSum[0][j][k-1],
tSum[0][j-1][k],
INT_MAX)
+ arr[0][j][k];
/* Construct rest of the tSum array */
for (i = 1; i < l; i++)
for (j = 1; j < m; j++)
for (k = 1; k < n; k++)
tSum[i][j][k] = min(tSum[i-1][j][k],
tSum[i][j-1][k],
tSum[i][j][k-1])
+ arr[i][j][k];
return tSum[l-1][m-1][n-1];
C++
// C++ program for Min path sum of 3D-array #include<bits/stdc++.h> using namespace std; #define l 3 #define m 3 #define n 3   // A utility function that returns minimum // of 3 integers int min(int x, int y, int z) {   return (x < y)? ((x < z)? x : z) :           ((y < z)? y : z); }   // function to calculate MIN path sum of 3D array int minPathSum(int arr[][m][n]) {   int i, j, k;   int tSum[l][m][n];     tSum[0][0][0] = arr[0][0][0];     /* Initialize first row of tSum array */  for (i = 1; i < l; i++)     tSum[i][0][0] = tSum[i-1][0][0] + arr[i][0][0];     /* Initialize first column of tSum array */  for (j = 1; j < m; j++)     tSum[0][j][0] = tSum[0][j-1][0] + arr[0][j][0];     /* Initialize first width of tSum array */  for (k = 1; k < n; k++)     tSum[0][0][k] = tSum[0][0][k-1] + arr[0][0][k];     /* Initialize first row- First column of      tSum array */  for (i = 1; i < l; i++)     for (j = 1; j < m; j++)       tSum[i][j][0] = min(tSum[i-1][j][0],                           tSum[i][j-1][0],                           INT_MAX)                     + arr[i][j][0];       /* Initialize first row- First width of      tSum array */  for (i = 1; i < l; i++)     for (k = 1; k < n; k++)       tSum[i][0][k] = min(tSum[i-1][0][k],                           tSum[i][0][k-1],                           INT_MAX)                     + arr[i][0][k];       /* Initialize first width- First column of      tSum array */  for (k = 1; k < n; k++)     for (j = 1; j < m; j++)       tSum[0][j][k] = min(tSum[0][j][k-1],                           tSum[0][j-1][k],                           INT_MAX)                     + arr[0][j][k];     /* Construct rest of the tSum array */  for (i = 1; i < l; i++)     for (j = 1; j < m; j++)       for (k = 1; k < n; k++)         tSum[i][j][k] = min(tSum[i-1][j][k],                             tSum[i][j-1][k],                             tSum[i][j][k-1])                         + arr[i][j][k];     return tSum[l-1][m-1][n-1];   }   // Driver program int main() {   int arr[l][m][n] = { { {1, 2, 4}, {3, 4, 5}, {5, 2, 1}},     { {4, 8, 3}, {5, 2, 1}, {3, 4, 2}},     { {2, 4, 1}, {3, 1, 4}, {6, 3, 8}}   };   cout << minPathSum(arr);   return 0; } |
Java
// Java program for Min path sum of 3D-array import java.io.*;   class GFG {           static int l =3;     static int m =3;     static int n =3;           // A utility function that returns minimum     // of 3 integers     static int min(int x, int y, int z)     {          return (x < y)? ((x < z)? x : z) :                 ((y < z)? y : z);     }           // function to calculate MIN path sum of 3D array     static int minPathSum(int arr[][][])     {         int i, j, k;         int tSum[][][] =new int[l][m][n];                   tSum[0][0][0] = arr[0][0][0];                   /* Initialize first row of tSum array */        for (i = 1; i < l; i++)             tSum[i][0][0] = tSum[i-1][0][0] + arr[i][0][0];                   /* Initialize first column of tSum array */        for (j = 1; j < m; j++)             tSum[0][j][0] = tSum[0][j-1][0] + arr[0][j][0];                   /* Initialize first width of tSum array */        for (k = 1; k < n; k++)             tSum[0][0][k] = tSum[0][0][k-1] + arr[0][0][k];                   /* Initialize first row- First column of             tSum array */        for (i = 1; i < l; i++)             for (j = 1; j < m; j++)             tSum[i][j][0] = min(tSum[i-1][j][0],                                 tSum[i][j-1][0],                                 Integer.MAX_VALUE)                             + arr[i][j][0];                             /* Initialize first row- First width of             tSum array */        for (i = 1; i < l; i++)             for (k = 1; k < n; k++)             tSum[i][0][k] = min(tSum[i-1][0][k],                                 tSum[i][0][k-1],                                 Integer.MAX_VALUE)                             + arr[i][0][k];                             /* Initialize first width- First column of             tSum array */        for (k = 1; k < n; k++)             for (j = 1; j < m; j++)             tSum[0][j][k] = min(tSum[0][j][k-1],                                 tSum[0][j-1][k],                                 Integer.MAX_VALUE)                             + arr[0][j][k];                   /* Construct rest of the tSum array */        for (i = 1; i < l; i++)             for (j = 1; j < m; j++)             for (k = 1; k < n; k++)                 tSum[i][j][k] = min(tSum[i-1][j][k],                                     tSum[i][j-1][k],                                     tSum[i][j][k-1])                                 + arr[i][j][k];                   return tSum[l-1][m-1][n-1];               }           // Driver program     public static void main (String[] args)     {         int arr[][][] = { { {1, 2, 4}, {3, 4, 5}, {5, 2, 1}},                           { {4, 8, 3}, {5, 2, 1}, {3, 4, 2}},                           { {2, 4, 1}, {3, 1, 4}, {6, 3, 8}}                         };         System.out.println ( minPathSum(arr));                   } }   // This code is contributed by vt_m |
Python3
# Python3 program for Min # path sum of 3D-array l = 3m = 3n = 3  # A utility function # that returns minimum # of 3 integers def Min(x, y, z):       return min(min(x,y),z)   # function to calculate MIN # path sum of 3D array def minPathSum(arr):           tSum = [[[0 for k in range(n)]for j in range(m)] for i in range(l)]             tSum[0][0][0] = arr[0][0][0]           # Initialize first     # row of tSum array     for i in range(1,l):         tSum[i][0][0] = tSum[i - 1][0][0] + arr[i][0][0]           # Initialize first column     # of tSum array     for j in range(1,m):         tSum[0][j][0] = tSum[0][j - 1][0] + arr[0][j][0]           # Initialize first     # width of tSum array     for k in range(1,n):         tSum[0][0][k] = tSum[0][0][k - 1] + arr[0][0][k]           # Initialize first     # row- First column of     # tSum array     for i in range(1,l):         for j in range(1,m):             tSum[i][j][0] = Min(tSum[i - 1][j][0],tSum[i][j - 1][0],1000000000) + arr[i][j][0];           # Initialize first     # row- First width of     # tSum array     for i in range(1,l):         for k in range(1,n):             tSum[i][0][k] = Min(tSum[i - 1][0][k],tSum[i][0][k - 1],1000000000) + arr[i][0][k]           # Initialize first     # width- First column of     # tSum array     for k in range(1,n):         for j in range(1,m):             tSum[0][j][k] = Min(tSum[0][j][k - 1],tSum[0][j - 1][k],1000000000) + arr[0][j][k]           # Construct rest of     # the tSum array     for i in range(1,l):         for j in range(1,m):             for k in range(1,n):                 tSum[i][j][k] = Min(tSum[i - 1][j][k],tSum[i][j - 1][k],tSum[i][j][k - 1]) + arr[i][j][k]           return tSum[l-1][m-1][n-1]         # Driver Code arr = [[[1, 2, 4], [3, 4, 5], [5, 2, 1]],         [[4, 8, 3], [5, 2, 1], [3, 4, 2]],         [[2, 4, 1], [3, 1, 4], [6, 3, 8]]] print(minPathSum(arr))   # This code is contributed by shinjanpatra |
C#
// C# program for Min // path sum of 3D-array using System;   class GFG {           static int l = 3;     static int m = 3;     static int n = 3;           // A utility function     // that returns minimum     // of 3 integers     static int min(int x, int y, int z)     {         return (x < y) ? ((x < z) ? x : z) :               ((y < z) ? y : z);     }           // function to calculate MIN     // path sum of 3D array     static int minPathSum(int [,,]arr)     {         int i, j, k;         int [ , , ]tSum = new int[l, m, n];                   tSum[0, 0, 0] = arr[0, 0, 0];                   /* Initialize first         row of tSum array */        for (i = 1; i < l; i++)             tSum[i, 0, 0] = tSum[i - 1, 0, 0] +                              arr[i, 0, 0];                   /* Initialize first column         of tSum array */        for (j = 1; j < m; j++)             tSum[0, j, 0] = tSum[0, j - 1, 0] +                              arr[0, j, 0];                   /* Initialize first         width of tSum array */        for (k = 1; k < n; k++)             tSum[0, 0, k] = tSum[0, 0, k - 1] +                              arr[0, 0, k];                   /* Initialize first         row- First column of         tSum array */        for (i = 1; i < l; i++)             for (j = 1; j < m; j++)             tSum[i, j, 0] = min(tSum[i - 1, j, 0],                                 tSum[i, j - 1, 0],                                 int.MaxValue) +                                 arr[i, j, 0];                             /* Initialize first         row- First width of         tSum array */        for (i = 1; i < l; i++)             for (k = 1; k < n; k++)             tSum[i, 0, k] = min(tSum[i - 1, 0, k],                                 tSum[i, 0, k - 1],                                 int.MaxValue) +                                 arr[i, 0, k];                             /* Initialize first         width- First column of         tSum array */        for (k = 1; k < n; k++)             for (j = 1; j < m; j++)             tSum[0, j, k] = min(tSum[0, j, k - 1],                                 tSum[0, j - 1, k],                                 int.MaxValue) +                                 arr[0, j, k];                   /* Construct rest of         the tSum array */        for (i = 1; i < l; i++)             for (j = 1; j < m; j++)             for (k = 1; k < n; k++)                 tSum[i, j, k] = min(tSum[i - 1, j, k],                                     tSum[i, j - 1, k],                                     tSum[i, j, k - 1]) +                                     arr[i, j, k];                   return tSum[l-1,m-1,n-1];               }           // Driver Code     static public void Main ()     {         int [, , ]arr= {{{1, 2, 4}, {3, 4, 5}, {5, 2, 1}},                         {{4, 8, 3}, {5, 2, 1}, {3, 4, 2}},                         {{2, 4, 1}, {3, 1, 4}, {6, 3, 8}}};         Console.WriteLine(minPathSum(arr));                   } }   // This code is contributed by ajit |
Javascript
<script>   // Javascript program for Min // path sum of 3D-array var l = 3; var m = 3; var n = 3;   // A utility function // that returns minimum // of 3 integers function min(x, y, z) {     return (x < y) ? ((x < z) ? x : z) :           ((y < z) ? y : z); }   // function to calculate MIN // path sum of 3D array function minPathSum(arr) {     var i, j, k;     var tSum = Array(l);           for(var i = 0; i<l;i++)     {         tSum[i] = Array.from(Array(m), ()=>Array(n));     }           tSum[0][0][0] = arr[0][0][0];           /* Initialize first     row of tSum array */    for (i = 1; i < l; i++)         tSum[i][0][0] = tSum[i - 1][0][0] +                          arr[i][0][0];           /* Initialize first column     of tSum array */    for (j = 1; j < m; j++)         tSum[0][j][0] = tSum[0][j - 1][0] +                          arr[0][j][0];           /* Initialize first     width of tSum array */    for (k = 1; k < n; k++)         tSum[0][0][k] = tSum[0][0][k - 1] +                          arr[0][0][k];           /* Initialize first     row- First column of     tSum array */    for (i = 1; i < l; i++)         for (j = 1; j < m; j++)             tSum[i][j][0] = min(tSum[i - 1][j][0],                             tSum[i][j - 1][0],                            1000000000) +                             arr[i][j][0];                 /* Initialize first     row- First width of     tSum array */    for (i = 1; i < l; i++)         for (k = 1; k < n; k++)             tSum[i][0][k] = min(tSum[i - 1][0][k],                             tSum[i][0][k - 1],                            1000000000) +                             arr[i][0][k];                 /* Initialize first     width- First column of     tSum array */    for (k = 1; k < n; k++)         for (j = 1; j < m; j++)             tSum[0][j][k] = min(tSum[0][j][k - 1],                             tSum[0][j - 1][k],                            1000000000) +                             arr[0][j][k];           /* Construct rest of     the tSum array */    for (i = 1; i < l; i++)         for (j = 1; j < m; j++)             for (k = 1; k < n; k++)                 tSum[i][j][k] = min(tSum[i - 1][j][k],                                 tSum[i][j - 1][k],                                 tSum[i][j][k - 1]) +                                 arr[i][j][k];           return tSum[l-1][m-1][n-1];       }   // Driver Code var arr= [[[1, 2, 4], [3, 4, 5], [5, 2, 1]],                 [[4, 8, 3], [5, 2, 1], [3, 4, 2]],                 [[2, 4, 1], [3, 1, 4], [6, 3, 8]]]; document.write(minPathSum(arr));   </script> |
Output:Â
20
Time Complexity : O(l*m*n)Â
Auxiliary Space : O(l*m*n)
This article is contributed by Shivam Pradhan. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Â
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

