Naor-Reingold Pseudo-Random Function is a function of generating random numbers. Moni Naor and Omer Reingold described efficient constructions for various cryptographic primitives in the private key as well as public-key cryptography.
Example:
Input : N = 5 Output: 9.0, 9.0, 3.0, 9.0, 3.0 Input : N = 7 Output: 9.0, 81.0, 9.0, 9.0, 3.0, 3.0, 9.0
Algorithm:
- Declare the variables p, l, g, n, x and arrays a[] and arr[]
- Take input from the user for generating random numbers
- Generate random numbers and use the defined approach:
Let p and l be prime numbers with l|p−1. Select an element g ε Fp* of multiplicative order l. Then for each n-dimensional vector a = (a0,a1, ..., an). They define the function as: fa(x)=ga0.a1x1a2x2…..anxn ε Fp
- Print the random numbers
Below is the implementation of the Naor-Reingold Pseudo-Random Function:
Java
// Java Program to Implement Naor-Reingold // Pseudo Random Function import java.util.*; public class Main {     public static void randomNumbers()     {         // Creating arrays and defining variables         int p = 7 , l = 2 , g = 3 , n = 6 , x;           int a[] = { 1 , 2 , 2 , 1 };           int arr[] = new int [ 4 ];           Random random = new Random();           int num = 10 ;         System.out.println( "The Random numbers are: " );           // Generating Random Numbers using         // Naor-Reingold Pseudo Random Function approach         for ( int i = 0 ; i < num; i++) {             x = random.nextInt(num) % 16 ;               for ( int j = 3 ; j >= 0 ; j--) {                 arr[j] = x % 2 ;                 x /= 2 ;             }             int mult = 1 ;               for ( int k = 0 ; k < 4 ; k++) {                 mult *= Math.pow(a[k], arr[k]);             }             System.out.print(Math.pow(g, mult) + ", " );         }     }     public static void main(String args[])     {         randomNumbers();     } } |
The Random numbers are: 9.0, 9.0, 3.0, 81.0, 3.0, 81.0, 9.0, 9.0, 3.0, 3.0,