Friday, October 17, 2025
HomeLanguagesPython – Left-skewed Levy Distribution in Statistics

Python – Left-skewed Levy Distribution in Statistics

scipy.stats.levy_l() is a left-skewed Levy continuous random variable. It is inherited from the of generic methods as an instance of the rv_continuous class. It completes the methods with details specific for this particular distribution.

Parameters :

q : lower and upper tail probability
x : quantiles
loc : [optional]location parameter. Default = 0
scale : [optional]scale parameter. Default = 1
size : [tuple of ints, optional] shape or random variates.
moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).

Results : left-skewed Levy continuous random variable

Code #1 : Creating left-skewed Levy continuous random variable




# importing library
  
from scipy.stats import levy_l  
    
numargs = levy_l.numargs 
a, b = 4.32, 3.18
rv = levy_l(a, b) 
    
print ("RV : \n", rv)  


Output :

RV : 
 scipy.stats._distn_infrastructure.rv_frozen object at 0x000002A9D6707508


Code #2 : left-skewed Levy continuous variates and probability distribution




import numpy as np 
quantile = np.arange (0.03, 2, 0.21
  
# Random Variates 
R = levy_l.rvs(a, b) 
print ("Random Variates : \n", R) 
  
# PDF 
R = levy_l.pdf(a, b, quantile) 
print ("\nProbability Distribution : \n", R) 


Output :

Random Variates : 
 1.1073459342251062

Probability Distribution : 
 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 

Code #3 : Graphical Representation.




import numpy as np 
import matplotlib.pyplot as plt 
     
distribution = np.linspace(0, np.maximum(rv.dist.b, 4)) 
print("Distribution : \n", distribution) 
     
plot = plt.plot(distribution, rv.pdf(distribution))  


Output :

Distribution : 
 [0.         0.08163265 0.16326531 0.24489796 0.32653061 0.40816327
 0.48979592 0.57142857 0.65306122 0.73469388 0.81632653 0.89795918
 0.97959184 1.06122449 1.14285714 1.2244898  1.30612245 1.3877551
 1.46938776 1.55102041 1.63265306 1.71428571 1.79591837 1.87755102
 1.95918367 2.04081633 2.12244898 2.20408163 2.28571429 2.36734694
 2.44897959 2.53061224 2.6122449  2.69387755 2.7755102  2.85714286
 2.93877551 3.02040816 3.10204082 3.18367347 3.26530612 3.34693878
 3.42857143 3.51020408 3.59183673 3.67346939 3.75510204 3.83673469
 3.91836735 4.        ]
 


Code #4 : Varying Positional Arguments




import matplotlib.pyplot as plt 
import numpy as np 
     
x = np.linspace(0, 5, 100
     
# Varying positional arguments 
y1 = levy_l .pdf(x, 1, 3
y2 = levy_l .pdf(x, 1, 4
plt.plot(x, y1, "*", x, y2, "r--"


Output :

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32361 POSTS0 COMMENTS
Milvus
88 POSTS0 COMMENTS
Nango Kala
6728 POSTS0 COMMENTS
Nicole Veronica
11892 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11954 POSTS0 COMMENTS
Shaida Kate Naidoo
6852 POSTS0 COMMENTS
Ted Musemwa
7113 POSTS0 COMMENTS
Thapelo Manthata
6805 POSTS0 COMMENTS
Umr Jansen
6801 POSTS0 COMMENTS