Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. It is an amazing visualization library in Python for 2D plots of arrays and used for working with the broader SciPy stack.
Matplotlib.axis.Axis.set_clip_path() Function
The Axis.set_clip_path() function in axis module of matplotlib library is used to set the artist’s clip path.
Syntax: Axis.set_clip_path(self, path, transform=None)
Parameters: This method accepts the following parameters.
- path: This parameter is the clip path.
- transform: This parameter in which Path is converted to a TransformedPath using transform.
Return value: This method does not return any value.
Below examples illustrate the matplotlib.axis.Axis.set_clip_path() function in matplotlib.axis:
Example 1:
Input Image
Python3
# Implementation of matplotlib function from matplotlib.axis import Axis import matplotlib.pyplot as plt import matplotlib.patches as patches import matplotlib.cbook as cbook with cbook.get_sample_data( 'neveropen-logo1.PNG' ) as image_file: image = plt.imread(image_file) fig, ax = plt.subplots() im = ax.imshow(image) patch = patches.Rectangle(( 10 , 10 ), 560 , 500 , transform = ax.transData) im.set_clip_path(patch) fig.suptitle('matplotlib.axis.Axis.set_clip_path() \ function Example\n', fontweight = "bold" ) plt.show() |
Output:
Example 2:
Python3
# Implementation of matplotlib function from matplotlib.axis import Axis import numpy as np import matplotlib.cm as cm import matplotlib.pyplot as plt from matplotlib.path import Path from matplotlib.patches import PathPatch delta = 0.025 x = y = np.arange( - 3.0 , 3.0 , delta) X, Y = np.meshgrid(x, y) Z1 = np.exp( - X * * 2 - Y * * 2 ) Z2 = np.exp( - (X - 1 ) * * 2 - (Y - 1 ) * * 2 ) Z = (Z1 - Z2) * 2 path = Path([[ 0 , 1 ], [ 1 , 0 ], [ 0 , - 1 ], [ - 1 , 0 ], [ 0 , 1 ]]) patch = PathPatch(path, facecolor = 'none' ) fig, ax = plt.subplots() ax.add_patch(patch) im = ax.imshow(Z, interpolation = 'bilinear' , cmap = cm.gray, origin = 'lower' , extent = [ - 3 , 3 , - 3 , 3 ], clip_path = patch, clip_on = True ) im.set_clip_path(patch) fig.suptitle('matplotlib.axis.Axis.set_clip_path() \ function Example\n', fontweight = "bold" ) plt.show() |
Output: