Given an N X M matrix, where ai, j = 1 denotes the cell is not empty, ai, j = 0 denotes the cell is empty, and ai, j = 2, denotes that you are standing at that cell. You can move vertically up or down and horizontally left or right to any cell which is empty. The task is to find the minimum number of steps to reach any boundary edge of the matrix. Print -1 if not possible to reach any of the boundary edges.Â
Note: There will be only one cell with a value of 2 in the entire matrix.Â
Examples:
Input: matrix[] = {1, 1, 1, 0, 1}
{1, 0, 2, 0, 1}
{0, 0, 1, 0, 1}
{1, 0, 1, 1, 0}
Output: 2
Move to the right and then move
upwards to reach the nearest boundary
edge.
Input: matrix[] = {1, 1, 1, 1, 1}
{1, 0, 2, 0, 1}
{1, 0, 1, 0, 1}
{1, 1, 1, 1, 1}
Output: -1
Approach: The problem can be solved using a Dynamic Programming approach. Given below is the algorithm to solve the above problem.Â
- Find the position which has ‘2’ in the matrix.
- Initialize two 2-D arrays of size the same as the matrix. The dp[][] which stores the minimum number of steps to reach any index i, j and vis[][] marks if any particular i, j position has been visited or not previously.
- Call the recursive function which has the base case as follows:Â
- if the traversal at any point reaches any of the boundary edges return 0.
- if the position of the points n, m has stored the minimum number of steps previously, then return dp[n][m].
- Call the recursion again with all possible four moves that can be done from the position n, m. The moves are only possible if mat[n][m] is 0 and the position has not been visited previously.
- Store the minimal of the four moves.
- If the recursion returns any value less than 1e9, which we had stored as the maximum value, then there is an answer, else it does not have an answer.
Below is the implementation of the above approach:Â
C++
// C++ program to find Minimum steps// to reach any of the boundary// edges of a matrix#include <bits/stdc++.h>using namespace std;#define r 4#define col 5Â
// Function to find out minimum stepsint findMinSteps(int mat[r][col], int n, int m, int dp[r][col], bool vis[r][col]){    // boundary edges reached    if (n == 0 || m == 0 || n == (r - 1) || m == (col - 1)) {        return 0;    }Â
    // already had a route through this    // point, hence no need to re-visit    if (dp[n][m] != -1)        return dp[n][m];Â
    // visiting a position    vis[n][m] = true;Â
    int ans1, ans2, ans3, ans4;Â
    ans1 = ans2 = ans3 = ans4 = 1e9;Â
    // vertically up    if (mat[n - 1][m] == 0) {        if (!vis[n - 1][m])            ans1 = 1 + findMinSteps(mat, n - 1, m, dp, vis);    }Â
    // horizontally right    if (mat[n][m + 1] == 0) {        if (!vis[n][m + 1])            ans2 = 1 + findMinSteps(mat, n, m + 1, dp, vis);    }Â
    // horizontally left    if (mat[n][m - 1] == 0) {        if (!vis[n][m - 1])            ans3 = 1 + findMinSteps(mat, n, m - 1, dp, vis);    }Â
    // vertically down    if (mat[n + 1][m] == 0) {        if (!vis[n + 1][m])            ans4 = 1 + findMinSteps(mat, n + 1, m, dp, vis);    }Â
    // minimum of every path    dp[n][m] = min(ans1, min(ans2, min(ans3, ans4)));    return dp[n][m];}Â
// Function that returns the minimum stepsint minimumSteps(int mat[r][col], int n, int m){    // index to store the location at    // which you are standing    int twox = -1;    int twoy = -1;Â
    // find '2' in the matrix    for (int i = 0; i < n; i++) {        for (int j = 0; j < m; j++) {            if (mat[i][j] == 2) {                twox = i;                twoy = j;                break;            }        }        if (twox != -1)            break;    }Â
    // Initialize dp matrix with -1    int dp[r][col];    memset(dp, -1, sizeof dp);Â
    // Initialize vis matrix with false    bool vis[r][col];    memset(vis, false, sizeof vis);Â
    // Call function to find out minimum steps    // using memoization and recursion    int res = findMinSteps(mat, twox, twoy, dp, vis);Â
    // if not possible    if (res >= 1e9)        return -1;    else        return res;}Â
// Driver Codeint main(){    int mat[r][col] = { { 1, 1, 1, 0, 1 },                      { 1, 0, 2, 0, 1 },                      { 0, 0, 1, 0, 1 },                      { 1, 0, 1, 1, 0 } };Â
    cout << minimumSteps(mat, r, col);} |
Java
// Java program to find Minimum steps// to reach any of the boundary// edges of a matrixclass Solution{static final int r=4,c=5;Â
// Function to find out minimum stepsstatic int findMinSteps(int mat[][], int n, int m, int dp[][], boolean vis[][]){    // boundary edges reached    if (n == 0 || m == 0 || n == (r - 1) || m == (c - 1)) {        return 0;    }      // already had a route through this    // point, hence no need to re-visit    if (dp[n][m] != -1)        return dp[n][m];      // visiting a position    vis[n][m] = true;      int ans1, ans2, ans3, ans4;      ans1 = ans2 = ans3 = ans4 = (int)1e9;      // vertically up    if (mat[n - 1][m] == 0) {        if (!vis[n - 1][m])            ans1 = 1 + findMinSteps(mat, n - 1, m, dp, vis);    }      // horizontally right    if (mat[n][m + 1] == 0) {        if (!vis[n][m + 1])            ans2 = 1 + findMinSteps(mat, n, m + 1, dp, vis);    }      // horizontally left    if (mat[n][m - 1] == 0) {        if (!vis[n][m - 1])            ans3 = 1 + findMinSteps(mat, n, m - 1, dp, vis);    }      // vertically down    if (mat[n + 1][m] == 0) {        if (!vis[n + 1][m])            ans4 = 1 + findMinSteps(mat, n + 1, m, dp, vis);    }      // minimum of every path    dp[n][m] = Math.min(ans1, Math.min(ans2, Math.min(ans3, ans4)));    return dp[n][m];}  // Function that returns the minimum stepsstatic int minimumSteps(int mat[][], int n, int m){    // index to store the location at    // which you are standing    int twox = -1;    int twoy = -1;      // find '2' in the matrix    for (int i = 0; i < n; i++) {        for (int j = 0; j < m; j++) {            if (mat[i][j] == 2) {                twox = i;                twoy = j;                break;            }        }        if (twox != -1)            break;    }      // Initialize dp matrix with -1    int dp[][]=new int[r][r];    for(int j=0;j<r;j++)    for(int i=0;i<r;i++)dp[j][i]=-1;      // Initialize vis matrix with false    boolean vis[][]= new boolean[r][r];    for(int j=0;j<r;j++)    for(int i=0;i<r;i++)vis[j][i]=false;      // Call function to find out minimum steps    // using memoization and recursion    int res = findMinSteps(mat, twox, twoy, dp, vis);      // if not possible    if (res >= 1e9)        return -1;    else        return res;}  // Driver Codepublic static void main(String args[]){    int mat[][] = { { 1, 1, 1, 0, 1 },                      { 1, 0, 2, 0, 1 },                      { 0, 0, 1, 0, 1 },                      { 1, 0, 1, 1, 0 } };      System.out.println( minimumSteps(mat, r, c));}}//contributed by Arnab Kundu |
Python
# Python program to find Minimum steps# to reach any of the boundary# edges of a matrixÂ
r=4col=5Â Â # Function to find out minimum stepsdef findMinSteps(mat, n, m, dp,vis):Â
    # boundary edges reached    if (n == 0 or m == 0 or n == (r - 1) or m == (col - 1)):        return 0           # already had a route through this    # point, hence no need to re-visit    if (dp[n][m] != -1):        return dp[n][m]      # visiting a position    vis[n][m] = True      ans1, ans2, ans3, ans4=10**9,10**9,10**9,10**9Â
      # vertically up    if (mat[n - 1][m] == 0):        if (vis[n - 1][m]==False):            ans1 = 1 + findMinSteps(mat, n - 1, m, dp, vis)           # horizontally right    if (mat[n][m + 1] == 0):        if (vis[n][m + 1]==False):            ans2 = 1 + findMinSteps(mat, n, m + 1, dp, vis)           # horizontally left    if (mat[n][m - 1] == 0):        if (vis[n][m - 1]==False):            ans3 = 1 + findMinSteps(mat, n, m - 1, dp, vis)           # vertically down    if (mat[n + 1][m] == 0):        if (vis[n + 1][m]==False):            ans4 = 1 + findMinSteps(mat, n + 1, m, dp, vis)           # minimum of every path    dp[n][m] = min(ans1, min(ans2, min(ans3, ans4)))    return dp[n][m]Â
  # Function that returns the minimum stepsdef minimumSteps(mat, n, m):Â
    # index to store the location at    # which you are standing    twox = -1    twoy = -1      # find '2' in the matrix    for i in range(n):         for j in range(m):             if (mat[i][j] == 2):                twox = i                twoy = j                break                              if (twox != -1):            break           # Initialize dp matrix with -1    dp=[[-1 for i in range(col)] for i in range(r)]           # Initialize vis matrix with false    vis=[[False for i in range(col)] for i in range(r)]           # Call function to find out minimum steps    # using memoization and recursion    res = findMinSteps(mat, twox, twoy, dp, vis)      # if not possible    if (res >= 10**9):        return -1    else:        return resÂ
  # Driver CodeÂ
Â
mat= [ [ 1, 1, 1, 0, 1 ],      [ 1, 0, 2, 0, 1 ],      [ 0, 0, 1, 0, 1 ],      [ 1, 0, 1, 1, 0 ] ]Â
print(minimumSteps(mat, r, col))Â
#this is contributed by Mohit kumar 29 |
C#
// C# program to find Minimum steps // to reach any of the boundary // edges of a matrixÂ
using System;Â
class Solution { static int r=4,c=5; Â
    // Function to find out minimum steps     static int findMinSteps(int [,]mat, int n, int m, int [,]dp, bool [,]vis)     {         // boundary edges reached         if (n == 0 || m == 0 || n == (r - 1) || m == (c - 1)) {             return 0;         }              // already had a route through this         // point, hence no need to re-visit         if (dp[n,m] != -1)             return dp[n,m];              // visiting a position         vis[n,m] = true;              int ans1, ans2, ans3, ans4;              ans1 = ans2 = ans3 = ans4 = (int)1e9;              // vertically up         if (mat[n - 1,m] == 0) {             if (!vis[n - 1,m])                 ans1 = 1 + findMinSteps(mat, n - 1, m, dp, vis);         }              // horizontally right         if (mat[n,m + 1] == 0) {             if (!vis[n,m + 1])                 ans2 = 1 + findMinSteps(mat, n, m + 1, dp, vis);         }              // horizontally left         if (mat[n,m - 1] == 0) {             if (!vis[n,m - 1])                 ans3 = 1 + findMinSteps(mat, n, m - 1, dp, vis);         }              // vertically down         if (mat[n + 1,m] == 0) {             if (!vis[n + 1,m])                 ans4 = 1 + findMinSteps(mat, n + 1, m, dp, vis);         }              // minimum of every path         dp[n,m] = Math.Min(ans1, Math.Min(ans2, Math.Min(ans3, ans4)));         return dp[n,m];     }          // Function that returns the minimum steps     static int minimumSteps(int [,]mat, int n, int m)     {         // index to store the location at         // which you are standing         int twox = -1;         int twoy = -1;              // find '2' in the matrix         for (int i = 0; i < n; i++) {             for (int j = 0; j < m; j++) {                 if (mat[i,j] == 2) {                     twox = i;                     twoy = j;                     break;                 }             }             if (twox != -1)                 break;         }              // Initialize dp matrix with -1         int [,]dp = new int[r,r];         for(int j=0;j<r;j++)             for(int i=0;i<r;i++)                dp[j,i]=-1;              // Initialize vis matrix with false         bool [,]vis= new bool [r,r];         for(int j=0;j<r;j++)             for(int i=0;i<r;i++)                vis[j,i]=false;              // Call function to find out minimum steps         // using memoization and recursion         int res = findMinSteps(mat, twox, twoy, dp, vis);              // if not possible         if (res >= 1e9)             return -1;         else            return res;     }          // Driver Code     public static void Main()     {         int [,]mat = { { 1, 1, 1, 0, 1 },                         { 1, 0, 2, 0, 1 },                         { 0, 0, 1, 0, 1 },                         { 1, 0, 1, 1, 0 }, };              Console.WriteLine(minimumSteps(mat, r, c));     }     // This code is contributed by RyugaÂ
} |
Javascript
<script>    // Javascript program to find Minimum steps    // to reach any of the boundary    // edges of a matrix         let r=4,c=5;       // Function to find out minimum steps    function findMinSteps(mat, n, m, dp, vis)    {        // boundary edges reached        if (n == 0 || m == 0 || n == (r - 1) || m == (c - 1)) {            return 0;        }Â
        // already had a route through this        // point, hence no need to re-visit        if (dp[n][m] != -1)            return dp[n][m];Â
        // visiting a position        vis[n][m] = true;Â
        let ans1, ans2, ans3, ans4;Â
        ans1 = ans2 = ans3 = ans4 = 1e9;Â
        // vertically up        if (mat[n - 1][m] == 0) {            if (!vis[n - 1][m])                ans1 = 1 + findMinSteps(mat, n - 1, m, dp, vis);        }Â
        // horizontally right        if (mat[n][m + 1] == 0) {            if (!vis[n][m + 1])                ans2 = 1 + findMinSteps(mat, n, m + 1, dp, vis);        }Â
        // horizontally left        if (mat[n][m - 1] == 0) {            if (!vis[n][m - 1])                ans3 = 1 + findMinSteps(mat, n, m - 1, dp, vis);        }Â
        // vertically down        if (mat[n + 1][m] == 0) {            if (!vis[n + 1][m])                ans4 = 1 + findMinSteps(mat, n + 1, m, dp, vis);        }Â
        // minimum of every path        dp[n][m] = Math.min(ans1, Math.min(ans2, Math.min(ans3, ans4)));        return dp[n][m];    }Â
    // Function that returns the minimum steps    function minimumSteps(mat, n, m)    {        // index to store the location at        // which you are standing        let twox = -1;        let twoy = -1;Â
        // find '2' in the matrix        for (let i = 0; i < n; i++) {            for (let j = 0; j < m; j++) {                if (mat[i][j] == 2) {                    twox = i;                    twoy = j;                    break;                }            }            if (twox != -1)                break;        }Â
        // Initialize dp matrix with -1        let dp = new Array(r);        for(let j=0;j<r;j++)        {            dp[j] = new Array(r);            for(let i=0;i<r;i++)            {                dp[j][i]=-1;            }        }Â
        // Initialize vis matrix with false        let vis = new Array(r);        for(let j=0;j<r;j++)        {            vis[j] = new Array(r);            for(let i=0;i<r;i++)            {                vis[j][i]=false;            }        }Â
        // Call function to find out minimum steps        // using memoization and recursion        let res = findMinSteps(mat, twox, twoy, dp, vis);Â
        // if not possible        if (res >= 1e9)            return -1;        else            return res;    }         let mat = [ [ 1, 1, 1, 0, 1 ],               [ 1, 0, 2, 0, 1 ],               [ 0, 0, 1, 0, 1 ],               [ 1, 0, 1, 1, 0 ] ];        document.write( minimumSteps(mat, r, c));Â
// This code is contributed by suresh07.</script> |
2
Complexity Analysis:
- Time Complexity: O(N^2), as we are using a for loop to traverse N times and in each traversal, we are calling the function findMinSteps which costs O(N) time, so the effective time will be O(N*N).
- Auxiliary Space: O(N^2), as we are using extra space for the dp matrix.
Minimum steps to reach any of the boundary edges of a matrix | Set-2
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!
