Thursday, October 9, 2025
HomeData Modelling & AIMaximizing Unique Pairs from two arrays

Maximizing Unique Pairs from two arrays

Given two arrays of equal size N, form maximum number of pairs by using their elements, one from the first array and second from the second array, such that an element from each array is used at-most-once and the absolute difference between the selected elements used for forming a pair is less than or equal to a given element K.

Examples: 

Input : a[] = {3, 4, 5, 2, 1}
        b[] = {6, 5, 4, 7, 15}
          k = 3
Output : 4
The maximum number of pairs that can be formed
using the above 2 arrays is 4 and the corresponding
pairs are [1, 4], [2, 5], [3, 6], [4, 7], we can't 
pair the remaining elements.
Other way of pairing under given constraint is 
[2, 5], [3, 6], [4, 4], but count of pairs here
is 3 which is less than the result 4.

Simple Approach: By taking few examples, we can observe that if we sort both arrays. Then one by picking the closest feasible element for every element, we get the optimal answer.

In this approach we first sort both the arrays and then compare each element of the first array with each element of the second array for the possible pair, if it’s possible to form a pair, we form the pair and move to check for the next possible pair for the next element of the first array.

Implementation:

C++




// C++ implementation of above approach
#include <bits/stdc++.h>
#define ll long long int
using namespace std;
  
// Returns count of maximum pairs that can
// be formed from a[] and b[] under given
// constraints.
ll findMaxPairs(ll a[], ll b[], ll n, ll k)
{
    sort(a, a+n); // Sorting the first array.
    sort(b, b+n); // Sorting the second array.
  
    // To keep track of visited elements of b[]
    bool flag[n];
    memset(flag, false, sizeof(flag));
  
    // For every element of a[], find a pair
    // for it and break as soon as a pair is
    // found.
    int result = 0;
    for (int i=0; i<n; i++)
    {
        for (int j=0; j<n; j++)
        {
            if (abs(a[i]-b[j])<=k && flag[j]==false)
            {
                // Increasing the count if a pair is formed.
                result++;
  
                /* Making the corresponding flag array
                   element as 1 indicating the element
                   in the second array element has
                   been used. */
                flag[j] = true;
  
                // We break the loop to make sure an
                // element of a[] is used only once.
                break;
            }
        }
    }
    return result;
}
  
// Driver code
int main()
{
    ll a[] = {10, 15, 20}, b[] = {17, 12, 24};
    int n = sizeof(a)/sizeof(a[0]);
    int k = 3;
    cout << findMaxPairs(a, b, n, k);
    return 0;
}


Java




// Java implementation of above approach
import java.util.*;
  
class solution
{
  
// Returns count of maximum pairs that can
// be formed from a[] and b[] under given
// constraints.
static int findMaxPairs(int a[], int b[], int n, int k)
{
    Arrays.sort(a); // Sorting the first array.
    Arrays.sort(b); // Sorting the second array.
  
    // To keep track of visited elements of b[]
    boolean []flag = new boolean[n];
    Arrays.fill(flag,false);
  
    // For every element of a[], find a pair
    // for it and break as soon as a pair is
    // found.
    int result = 0;
    for (int i=0; i<n; i++)
    {
        for (int j=0; j<n; j++)
        {
            if (Math.abs(a[i]-b[j])<=k && flag[j]==false)
            {
                // Increasing the count if a pair is formed.
                result++;
  
                /* Making the corresponding flag array
                element as 1 indicating the element
                in the second array element has
                been used. */
                flag[j] = true;
  
                // We break the loop to make sure an
                // element of a[] is used only once.
                break;
            }
        }
    }
    return result;
}
  
// Driver code
public static void main(String args[])
{
    int[] a = {10, 15, 20};
    int[] b = {17, 12, 24};
    int n = a.length;
    int k = 3;
    System.out.println(findMaxPairs(a, b, n, k));
  
}
}
  
// This code is contributed by
// Shashank_Sharma


Python 3




# Returns count of maximum pairs 
# that can be formed from a[] and 
# b[] under given constraints.
def findMaxPairs(a, b, n, k):
  
    a.sort() # Sorting the first array.
    b.sort() # Sorting the second array.
  
    # To keep track of visited
    # elements of b[]
    flag = [False] * n
  
    # For every element of a[], find 
    # a pair for it and break as soon 
    # as a pair is found.
    result = 0
    for i in range(n):
        for j in range(n):
            if (abs(a[i] - b[j]) <= k and 
                         flag[j] == False):
      
                # Increasing the count if 
                # a pair is formed.
                result += 1
  
                ''' Making the corresponding flag array
                element as 1 indicating the element
                in the second array element has
                been used. '''
                flag[j] = True
  
                # We break the loop to make sure an
                # element of a[] is used only once.
                break
    return result
  
# Driver code
if __name__ == "__main__":
    a = [10, 15, 20]
    b = [17, 12, 24]
    n = len(a)
    k = 3
    print(findMaxPairs(a, b, n, k))
  
# This code is contributed
# by ChitraNayal


C#




// C# implementation of above approach
using System; 
  
class GFG 
{ 
  
    // Returns count of maximum pairs that can 
    // be formed from a[] and b[] under given 
    // constraints. 
    static int findMaxPairs(int []a, int []b, 
                                int n, int k) 
    { 
        Array.Sort(a); // Sorting the first array. 
        Array.Sort(b); // Sorting the second array. 
  
        // To keep track of visited elements of b[] 
        bool []flag = new bool[n]; 
      
        //Arrays.fill(flag,false); 
  
        // For every element of a[], find a pair 
        // for it and break as soon as a pair is 
        // found. 
        int result = 0; 
        for (int i = 0; i < n; i++) 
        { 
            for (int j = 0; j < n; j++) 
            { 
                if (Math.Abs(a[i] - b[j]) <= k && flag[j] == false) 
                { 
                    // Increasing the count if a pair is formed. 
                    result++; 
  
                    /* Making the corresponding flag array 
                    element as 1 indicating the element 
                    in the second array element has 
                    been used. */
                    flag[j] = true; 
  
                    // We break the loop to make sure an 
                    // element of a[] is used only once. 
                    break; 
                } 
            } 
        } 
        return result; 
    } 
  
    // Driver code 
    public static void Main() 
    { 
        int[] a = {10, 15, 20}; 
        int[] b = {17, 12, 24}; 
        int n = a.Length; 
        int k = 3; 
        Console.WriteLine(findMaxPairs(a, b, n, k)); 
    } 
} 
  
// This code is contributed by Rajput-Ji


Javascript




<script>
// Javascript implementation of above approach
      
    // Returns count of maximum pairs that can
    // be formed from a[] and b[] under given
    // constraints.
    function findMaxPairs(a,b,n,k)
    {
        a.sort(function(c,d){return c-d;}); // Sorting the first array.
        b.sort(function(c,d){return c-d;}) // Sorting the second array.
   
    // To keep track of visited elements of b[]
    let flag = new Array(n);
    for(let i=0;i<flag.length;i++)
    {
        flag[i]=false;
    }
   
    // For every element of a[], find a pair
    // for it and break as soon as a pair is
    // found.
    let result = 0;
    for (let i=0; i<n; i++)
    {
        for (let j=0; j<n; j++)
        {
            if (Math.abs(a[i]-b[j])<=k && flag[j]==false)
            {
                // Increasing the count if a pair is formed.
                result++;
   
                /* Making the corresponding flag array
                element as 1 indicating the element
                in the second array element has
                been used. */
                flag[j] = true;
   
                // We break the loop to make sure an
                // element of a[] is used only once.
                break;
            }
        }
    }
    return result;
    }
      
    // Driver code
    let a=[10, 15, 20];
    let b=[17, 12, 24];
    let n = a.length;
    let k = 3;
    document.write(findMaxPairs(a, b, n, k));
        
      
    // This code is contributed by rag2127
</script>


Output

2

Time complexity : O(n2) 
Auxiliary Space : O(n) 

Efficient Approach: In this approach, rather than checking all the possible combinations of pairs, we optimize our code by checking only the feasible combination of pairs using the 2 pointer approach.

Implementation:

C++




#include <bits/stdc++.h>
#define ll long long int
using namespace std;
  
// Returns count of maximum pairs that can
// be formed from a[] and b[] under given
// constraints.
ll findMaxPairs(ll a[], ll b[], ll n, ll k)
{
    sort(a, a+n); // Sorting the first array.
    sort(b, b+n); // Sorting the second array.
  
    int result = 0;
    for (int i=0, j=0; i<n && j<n;)
    {
        if (abs(a[i] - b[j]) <= k)
        {
            result++;
  
            // Increasing array pointer of
            // both the first and the second array.
            i++;
            j++;
        }
  
        // Increasing array pointer of the second array.
        else if(a[i] > b[j])
            j++;
  
        // Increasing array pointer of the first array.
        else
            i++;
    }
    return result;
}
  
// Driver code
int main()
{
    ll a[] = {10, 15, 20};
    ll b[] = {17, 12, 24};
    int n = sizeof(a)/sizeof(a[0]);
    int k = 3;
    cout << findMaxPairs(a, b, n, k);
    return 0;
}


Java




// Java program for Maximizing Unique Pairs 
// from two arrays
import java.util.*;
  
class GFG
{
  
// Returns count of maximum pairs that can
// be formed from a[] and b[] under given
// constraints.
static int findMaxPairs(int a[], int b[], 
                        int n, int k)
{
    Arrays.sort(a); // Sorting the first array.
    Arrays.sort(b); // Sorting the second array.
  
    int result = 0;
    for (int i = 0, j = 0; i < n && j < n;)
    {
        if (Math.abs(a[i] - b[j]) <= k)
        {
            result++;
  
            // Increasing array pointer of
            // both the first and the second array.
            i++;
            j++;
        }
  
        // Increasing array pointer 
        // of the second array.
        else if(a[i] > b[j])
            j++;
  
        // Increasing array pointer 
        // of the first array.
        else
            i++;
    }
    return result;
}
  
// Driver code
public static void main(String args[])
{
    int a[] = {10, 15, 20};
    int b[] = {17, 12, 24};
    int n = a.length;
    int k = 3;
    System.out.println(findMaxPairs(a, b, n, k));
}
}
  
// This code is contributed by
// Sanjit_Prasad


Python3




# Python3 program for
# Maximizing Unique Pairs 
# from two arrays
  
# Returns count of maximum pairs that can 
# be formed from a[] and b[] under given 
# constraints. 
def findMaxPairs(a,b,n,k):
      
    # Sorting the first array.
    a.sort()
      
    # Sorting the second array.
    b.sort() 
      
    result =0
    j=0
    for i in range(n):
        if j<n:
            if abs(a[i]-b[j])<=k:
                result+=1
  
            # Increasing array pointer of 
            # both the first and the second array. 
                j +=1
                  
            # Increasing array pointer of 
            # the second array. 
            elif a[i]>b[j]:
                j+=1
    return result
  
# Driver code
if __name__=='__main__':
    a = [10,15,20]
    b = [17,12,24]
    n = len(a)
    k =3
    print(findMaxPairs(a,b,n,k))
  
# This code is contributed by 
# Shrikant13


C#




// C# program for Maximizing Unique Pairs 
// from two arrays
using System;
  
class GFG
{
  
// Returns count of maximum pairs that can
// be formed from a[] and b[] under given
// constraints.
static int findMaxPairs(int []a, int []b, 
                        int n, int k)
{
    Array.Sort(a); // Sorting the first array.
    Array.Sort(b); // Sorting the second array.
  
    int result = 0;
    for (int i = 0, j = 0; i < n && j < n;)
    {
        if (Math.Abs(a[i] - b[j]) <= k)
        {
            result++;
  
            // Increasing array pointer of
            // both the first and the second array.
            i++;
            j++;
        }
  
        // Increasing array pointer 
        // of the second array.
        else if(a[i] > b[j])
            j++;
  
        // Increasing array pointer 
        // of the first array.
        else
            i++;
    }
    return result;
}
  
// Driver code
public static void Main(String []args)
{
    int []a = {10, 15, 20};
    int []b = {17, 12, 24};
    int n = a.Length;
    int k = 3;
    Console.WriteLine(findMaxPairs(a, b, n, k));
}
}
  
// This code has been contributed by 29AjayKumar


Javascript




<script>
  
    // Javascript program for Maximizing
    // Unique Pairs from two arrays
      
    // Returns count of maximum pairs that can
    // be formed from a[] and b[] under given
    // constraints.
    function findMaxPairs(a, b, n, k)
    {
        // Sorting the first array.
        a.sort(function(a, b){return a - b}); 
        // Sorting the second array.
        b.sort(function(a, b){return a - b}); 
  
        let result = 0;
        for (let i = 0, j = 0; i < n && j < n;)
        {
            if (Math.abs(a[i] - b[j]) <= k)
            {
                result++;
  
                // Increasing array pointer of
                // both the first and the second array.
                i++;
                j++;
            }
  
            // Increasing array pointer 
            // of the second array.
            else if(a[i] > b[j])
                j++;
  
            // Increasing array pointer 
            // of the first array.
            else
                i++;
        }
        return result;
    }
      
    let a = [10, 15, 20];
    let b = [17, 12, 24];
    let n = a.length;
    let k = 3;
    document.write(findMaxPairs(a, b, n, k));
          
</script>


Output

2

Time complexity : O(n Log n) 
Auxiliary Space : O(1) 

This article is contributed by Aditya Gupta. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks. 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32346 POSTS0 COMMENTS
Milvus
87 POSTS0 COMMENTS
Nango Kala
6715 POSTS0 COMMENTS
Nicole Veronica
11878 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11941 POSTS0 COMMENTS
Shaida Kate Naidoo
6837 POSTS0 COMMENTS
Ted Musemwa
7095 POSTS0 COMMENTS
Thapelo Manthata
6790 POSTS0 COMMENTS
Umr Jansen
6791 POSTS0 COMMENTS